Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Bioanalysis ; 15(16): 955-1016, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650500

ABSTRACT

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.


Subject(s)
Chromatography , Vaccines , Biomarkers , Cell- and Tissue-Based Therapy , Mass Spectrometry , Oligonucleotides , Technology
2.
J Pharm Anal ; 12(2): 317-323, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582393

ABSTRACT

Inducible T-cell costimulator (ICOS), a homodimeric protein expressed on the surface of activated T-cells, is being investigated as a potential therapeutic target to treat various cancers. Recent studies have reported aberrant increases in the soluble form of ICOS (sICOS) in human serum in disease-state patients, primarily using commercial ELISA kits. However, results from our in-house immunoassay did not show these aberrant increases, leading us to speculate that commercial sICOS ELISAs may be prone to interference. We directly tested that hypothesis and found that one widely used commercial kit yields false-positives and is prone to human anti-mouse antibody interference. We then analyzed a panel of healthy, cancer, chronic hepatitis C virus, systemic lupus erythematosus, and diffuse cutaneous systemic sclerosis human serum using our in-house immunoassay and reported the measured sICOS concentrations in these populations. Since even well characterized immunoassay methods are prone to non-specific interference, we also developed a novel sICOS LC-MS/MS method to confirm the results. Using these orthogonal approaches, we show that sICOS is a low abundance soluble protein that cannot be measured above approximately 20 pg/mL in human serum.

3.
Bioanalysis ; 14(9): 505-580, 2022 May.
Article in English | MEDLINE | ID: mdl-35578993

ABSTRACT

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.


Subject(s)
Extracellular Vesicles , Vaccines , Biomarkers/analysis , Cell- and Tissue-Based Therapy , Extracellular Vesicles/chemistry , Humans , Mass Spectrometry/methods , Nanomedicine
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-931260

ABSTRACT

Inducible T-cell costimulator(ICOS),a homodimeric protein expressed on the surface of activated T-cells,is being investigated as a potential therapeutic target to treat various cancers.Recent studies have re-ported aberrant increases in the soluble form of ICOS(sICOS)in human serum in disease-state patients,primarily using commercial ELISA kits.However,results from our in-house immunoassay did not show these aberrant increases,leading us to speculate that commercial sICOS ELISAs may be prone to inter-ference.We directly tested that hypothesis and found that one widely used commercial kit yields false-positives and is prone to human anti-mouse antibody interference.We then analyzed a panel of healthy,cancer,chronic hepatitis C virus,systemic lupus erythematosus,and diffuse cutaneous systemic sclerosis human serum using our in-house immunoassay and reported the measured sICOS concentrations in these populations.Since even well characterized immunoassay methods are prone to non-specific interference,we also developed a novel sICOS LC-MS/MS method to confirm the results.Using these orthogonal approaches,we show that sICOS is a low abundance soluble protein that cannot be measured above approximately 20 pg/mL in human serum.

5.
EJNMMI Res ; 9(1): 45, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31115711

ABSTRACT

Conjugation or fusion to AlbudAbs™ (albumin-binding domain antibodies) is a novel approach to extend the half-life and alter the tissue distribution of biological and small molecule therapeutics. To understand extravasation kinetics and extravascular organ concentrations of AlbudAbs in humans, we studied tissue distribution and elimination of a non-conjugated 89Zr-labeled AlbudAb in healthy volunteers using positron emission tomography/computed tomography (PET/CT). METHODS: A non-conjugated AlbudAb (GSK3128349) was radiolabeled with 89Zr and a single 1 mg (~ 15 MBq) dose intravenously administered to eight healthy males. 89Zr-AlbudAb tissue distribution was followed for up to 7 days with four whole-body PET/CT scans. 89Zr-AlbudAb tissue concentrations were quantified in organs of therapeutic significance, measuring standardized uptake value and tissue/plasma ratios. Plasma pharmacokinetics were assessed by gamma counting and LC-MS/MS of blood samples. RESULTS: 89Zr-AlbudAb administration and PET/CT procedures were well tolerated, with no drug-related immunogenicity or adverse events. 89Zr-AlbudAb rapidly distributed throughout the vasculature, with tissue/plasma ratios in the liver, lungs, and heart relatively stable over 7 days post-dose, ranging between 0.1 and 0.5. The brain tissue/plasma ratio of 0.025 suggested minimal AlbudAb blood-brain barrier penetration. Slowly increasing ratios in muscle, testis, pancreas, and spleen reflected either slow AlbudAb penetration and/or 89Zr residualization in these organs. Across all tissues evaluated, the kidney tissue/plasma ratio was highest (0.5-1.5 range) with highest concentration in the renal cortex. The terminal half-life of the 89Zr-AlbudAb was 18 days. CONCLUSION: Evaluating the biodistribution of 89Zr-AlbudAb in healthy volunteers using a low radioactivity dose was successful (total subject exposure ~ 10 mSv). Results indicated rapid formation of reversible, but stable, complexes between AlbudAb and albumin upon dosing. 89Zr-AlbudAb demonstrated albumin-like pharmacokinetics, including limited renal elimination. This novel organ-specific distribution data for AlbudAbs in humans will facilitate a better selection of drug targets to prosecute using the AlbudAb platform and significantly contribute to modeling work optimizing dosing of therapeutic AlbudAbs in the clinic.

SELECTION OF CITATIONS
SEARCH DETAIL
...