Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(1): 217-233, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34962802

ABSTRACT

Cognitive impairment and learning ability of the brain are directly linked to synaptic plasticity as measured in changes of long-term potentiation (LTP) and long-term depression (LTD) in animal models of brain diseases. LTD reflects a sustained reduction of the synaptic AMPA receptor content based on targeted clathrin-mediated endocytosis. AMPA receptor endocytosis is initiated by dephosphorylation of Tyr876 on the C-terminus of the AMPAR subunit GluA2. The brain-specific striatal-enriched protein tyrosine phosphatase (STEP) is responsible for this process. To identify new, highly effective inhibitors of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization, we performed structure-based design of peptides able to inhibit STEP-GluA2-CT complex formation. Two short peptide derivatives were found as efficient in vitro inhibitors. Our in vivo experiments evidenced that both peptides restore the memory deficits and display anxiolytic and antidepressant effects in a scopolamine-treated rat model. The interference peptides identified and characterized here represent promising lead compounds for novel cognitive enhancers and/or behavioral modulators.


Subject(s)
Cognition/drug effects , Long-Term Potentiation/drug effects , Peptide Fragments/pharmacology , Protein Interaction Domains and Motifs/drug effects , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Receptors, AMPA/antagonists & inhibitors , Animals , Endocytosis , Hippocampus/drug effects , Male , Mice , Neuronal Plasticity , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Rats , Rats, Wistar , Receptors, AMPA/metabolism , Synapses/drug effects
2.
J Cell Physiol ; 235(6): 5192-5203, 2020 06.
Article in English | MEDLINE | ID: mdl-31729029

ABSTRACT

The transient receptor potential melastatin type 8 (TRPM8) receptor channel is expressed in primary afferent neurons where it is the main transducer of innocuous cold temperatures and also in a variety of tumors, where it is involved in progression and metastasis. Modulation of this channel by intracellular signaling pathways has therefore important clinical implications. We investigated the modulation of recombinant and natively expressed TRPM8 by the Src kinase, which is known to be involved in cancer pathophysiology and inflammation. Human TRPM8 expressed in HEK293T cells is constitutively tyrosine phosphorylated by Src which is expressed either heterologously or endogenously. Src action on TRPM8 potentiates its activity, as treatment with PP2, a selective Src kinase inhibitor, reduces both TRPM8 tyrosine phosphorylation and cold-induced channel activation. RNA interference directed against the Src kinase diminished the extent of PP2-induced functional downregulation of TRPM8, confirming that PP2 acts mainly through Src inhibition. Finally, the effect of PP2 on TRPM8 cold activation was reproduced in cultured rat dorsal root ganglion neurons, and this action was antagonized by the protein tyrosine phosphatase inhibitor pervanadate, confirming that TRPM8 activity is sensitive to the cellular balance between tyrosine kinases and phosphatases. This positive modulation of TRPM8 by Src kinase may be relevant for inflammatory pain and cancer signaling.


Subject(s)
Inflammation/genetics , Neurons, Afferent/metabolism , TRPM Cation Channels/genetics , src-Family Kinases/genetics , Animals , Biological Transport/genetics , Cold Temperature , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/pathology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neurons, Afferent/pathology , Pain/drug therapy , Pain/genetics , Phosphorylation/genetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Rats , Tyrosine/metabolism , src-Family Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...