Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters











Publication year range
1.
Nat Rev Chem ; 8(9): 665-685, 2024 09.
Article in English | MEDLINE | ID: mdl-39112717

ABSTRACT

Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.


Subject(s)
Click Chemistry , Infrared Rays , Infrared Rays/adverse effects , Light/adverse effects , Photochemical Processes , Ultraviolet Rays/adverse effects , Humans
2.
Angew Chem Int Ed Engl ; : e202411380, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140843

ABSTRACT

Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages, most importantly it allows for the spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate based systems.

3.
Nucl Med Biol ; 138-139: 108946, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39151305

ABSTRACT

Positron emission tomography (PET) can provide information about tumor-associated macrophage (TAM) infiltration, as long as a suitable tracer is available. This study aimed to evaluate the radiolabeled peptide [18F]AlF-NODA-MP-C6-CTHRSSVVC as a potential PET tracer for imaging of the CD163 receptor, which is expressed on M2-type tumor-associated macrophages. The conjugated peptide NODA-MP-C6-CTHRSSVVC was labeled with aluminum [18F]fluoride. Tracer binding and its biodistribution were evaluated in an in vitro binding assay and in healthy BALB/c mice, respectively. In addition, different treatments with cyclophosphamide in tumor-bearing mice were used to assess whether the tracer could detect differences in CD163 expression caused by differential TAM infiltration. After 7 days of treatment, animals were injected with [18F]AlF-NODA-MP-C6-CTHRSSVVC, and a 60-min dynamic PET scan was performed, followed by an ex vivo biodistribution study. [18F]AlF-NODA-MP-C6-CTHRSSVVC was prepared in 23 ± 6 % radiochemical yield and showed approximately 50 % of specific receptor-mediated binding in an in vitro binding assay on human CD163-expressing tissue homogenates. No CD163-mediated binding of [18F]AlF-NODA-MP-C6-CTHRSSVVC was detected by PET under normal physiological conditions in healthy BALB/c mice. On the other hand, CD163-positive xenograft tumors were clearly visualized with PET and a positive correlation was found between CD163 levels and the [18F]AlF-NODA-MP-C6-CTHRSSVVC tumor-to-muscle ratio (TMR) obtained from the PET images (Pearson r = 0.76, p = 0.002). No significant differences in the CD163 protein level and in the tracer uptake between treatment groups were found in the tumors. Taken together, [18F]AlF-NODA-MP-C6-CTHRSSVVC appears a promising candidate PET tracer for M2-type TAM, as it binds specifically to CD163 in vitro and its tumor uptake correlates well with CD163 expression in vivo.

4.
Chem Commun (Camb) ; 60(70): 9388-9391, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39132823

ABSTRACT

Here we present the formation of an iminothioindoxyl (ITI)⊂Cage complex that retains the photochemical properties of the photoswitch within a confined environment in water. At the same time, besides ultrafast switching inside the cage, the ITI photoswitch displays an intriguing bifurcation of the excited state isomerization pathway when encapsulated.

5.
Chem Sci ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39165728

ABSTRACT

Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.1-10 seconds. Here we present our efforts towards the engineering of the half-life of iminothioindoxyl (ITI) photoswitches, a recently discovered class of visible-light-responsive photochromes, whose applicability was hitherto limited by half-lives in the low millisecond range. Through the synthesis and characterization of a library of ITI photoswitches, we discovered variants with a substantially increased thermal stability, reaching half-lives of up to 0.2 seconds. Based on spectroscopic and computational analyses, we demonstrate how different substituent positions on the ITI molecule can be used to tune its photophysical properties independently to fit the desired application. Additionally, the unique reactivity of the ITI derivative that featured a perfluoro-aromatic ring and had the most long-lived metastable state was shown to be useful for labeling of nucleophilic functional groups. The present research thus paves the way for using ITI photoswitches in photopharmacology and chemical biology.

6.
Chem Sci ; 15(29): 11557-11563, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39055031

ABSTRACT

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by its operational simplicity and high biocompatibility. One essential aspect of photoclick reactions is their high rate, however the limited solubility of PQs often requires the use of a co-solvent. Evaluating the effect of different co-solvents on the PQ-ERA reaction and their influence on the reaction rate, we discovered that sulfur-containing compounds, in particular the frequently used solubilizing co-solvent DMSO, quench the triplet state of the PQ. These experimental results, supported by nanosecond-microsecond and ultrafast transient absorption data, show that even minimal amounts of DMSO result in a decreased lifetime of the reactive triplet state, essential for the photoclick reaction. Without DMSO as co-solvent, exceptionally high photoreaction quantum yields ( Φ P up to 93% with only 1 equivalent ERA) and complete conversion in seconds can be achieved. With these outstanding efficiencies, the PQ-ERA reaction can be used without excess ERA and at low light intensities, facilitating photoclick transformations in various future applications.

8.
EJNMMI Radiopharm Chem ; 9(1): 42, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753262

ABSTRACT

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

9.
Angew Chem Int Ed Engl ; 63(21): e202319321, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38511339

ABSTRACT

Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.

10.
ACS Chem Biol ; 19(2): 451-461, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38318850

ABSTRACT

Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.


Subject(s)
Azo Compounds , Light , Humans , Azo Compounds/toxicity , Azo Compounds/chemistry , Proteins/metabolism , Isomerism , Porins/metabolism
11.
Chem Sci ; 15(6): 2062-2073, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332822

ABSTRACT

Photocleavable protecting groups (PPGs) enable the precise spatiotemporal control over the release of a payload of interest, in particular a bioactive substance, through light irradiation. A crucial parameter that determines the practical applicability of PPGs is the efficiency of payload release, largely governed by the quantum yield of photolysis (QY). Understanding which parameters determine the QY will prove crucial for engineering improved PPGs and their effective future applications, especially in the emerging field of photopharmacology. The Contact Ion Pair (CIP) has been recognized as an important intermediate in the uncaging process, but the key influence of its fate on the quantum yield has not been explored yet, limiting our ability to design improved PPGs. Here, we demonstrate that the CIP escape mechanism of PPGs is crucial for determining their payload- and solvent-dependent photolysis QY, and illustrate that an intramolecular type of CIP escape is superior over diffusion-dependent CIP escape. Furthermore, we report a strong correlation of the photolysis QY of a range of coumarin PPGs with the DFT-calculated height of all three energy barriers involved in the photolysis reaction, despite the vastly different mechanisms of CIP escape that these PPGs exhibit. Using the insights obtained through our analysis, we were able to predict the photolysis QY of a newly designed PPG with particularly high accuracy. The level of understanding of the factors determining the QY of PPGs presented here will move the ever-expanding field of PPG applications forward and provides a blueprint for the development of PPGs with QYs that are independent of payload-topology and solvent polarity.

12.
J Am Chem Soc ; 146(3): 2062-2071, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38226790

ABSTRACT

A family of neurodegenerative diseases, including Huntington's disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for ß-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over ß-hairpin formation by the introduction of a photosensitive ß-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired ß-turn structure. A new azobenzene-based ß-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the ß-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, ß-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of ß-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , Peptides/chemistry , Azo Compounds , Huntington Disease/metabolism , Amino Acids
13.
Chem Commun (Camb) ; 60(5): 578-581, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38095129

ABSTRACT

Photocleavable protecting groups (PPGs) enable the light-induced, spatiotemporal control over the release of a payload of interest. Two fundamental challenges in the design of new, effective PPGs are increasing the quantum yield (QY) of photolysis and red-shifting the absorption spectrum. Here we describe the combination of two photochemical strategies for PPG optimization in one molecule, resulting in significant improvements in both these crucial parameters. Furthermore, we for the first time identify the process of photo-isomerization to strongly influence the QY of photolysis of a PPG and identify the cis-isomer as the superior PPG.

14.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37895910

ABSTRACT

The molecular imaging of biomarkers plays an increasing role in medical diagnostics. In particular, the imaging of enzyme activity is a promising approach, as it enables the use of its inherent catalytic activity for the amplification of an imaging signal. The increased activity of a sulfatase enzyme has been observed in several types of cancers. We describe the development and in vitro evaluation of molecular imaging agents that allow for the detection of sulfatase activity using the whole-body, non-invasive MRI and CEST imaging methods. This approach relies on a responsive ligand that features a sulfate ester moiety, which upon sulfatase-catalyzed hydrolysis undergoes an elimination process that changes the functional group, coordinating with the metal ion. When Gd3+ is used as the metal, the complex can be used for MRI, showing a 25% decrease at 0.23T and a 42% decrease at 4.7T in magnetic relaxivity after enzymatic conversion, thus providing a "switch-off" contrast agent. Conversely, the use of Yb3+ as the metal leads to a "switch-on" effect in the CEST imaging of sulfatase activity. Altogether, the results presented here provide a molecular basis and a proof-of-principle for the magnetic imaging of the activity of a key cancer biomarker.

15.
EJNMMI Radiopharm Chem ; 8(1): 35, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889361

ABSTRACT

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

16.
J Am Chem Soc ; 145(36): 19894-19902, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37656631

ABSTRACT

Azonium ions formed by the protonation of tetra-ortho-methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties. Using a combination of sub-ps/ns transient absorption measurements and quantum chemical calculations, we show that the absorption of a photon by the protonated E-H+ form of the photoswitch causes rapid (ps) isomerization to the protonated Z-H+ form, which can also absorb red light. Proton transfer to solvent then occurs on a microsecond time scale, leading to an equilibrium between Z and Z-H+ species, the position of which depends on the solution pH. Whereas thermal isomerization of the neutral Z form to the neutral E form is slow (∼0.001 s-1), thermal isomerization of Z-H+ to E-H+ is rapid (∼100 s-1), so the solution pH also governs the rate at which E/E-H+ concentrations are restored after a light pulse. This analysis provides the first complete mechanistic picture that explains the observed intricate photoswitching behavior of azonium ions at a range of pH values. It further suggests features of azonium ions that could be targeted for improvement to enhance the applicability of these compounds for the photocontrol of biomolecules.

17.
Chem Sci ; 14(27): 7465-7474, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37449069

ABSTRACT

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by high selectivity, external non-invasive control with light and biocompatibility. The conventionally used PQ compounds show limited reactivity, which hinders the overall efficiency of the PQ-ERA reaction. To address this issue, we present in this study a simple strategy to boost the reactivity of the PQ triplet state to further enhance the efficiency of the PQ-ERA reaction, enabled by thiophene substitution at the 3-position of the PQ scaffold. Our investigations show that this substitution pattern significantly increases the population of the reactive triplet state (3ππ*) during excitation of 3-thiophene PQs. This results in a superb photoreaction quantum yield (ΦP, up to 98%), high second order rate constants (k2, up to 1974 M-1 s-1), and notable oxygen tolerance for the PQ-ERA reaction system. These results have been supported by both experimental transient absorption data and theoretical calculations, providing further evidence for the effectiveness of this strategy, and offering fine prospects for fast and efficient photoclick transformations.

18.
Angew Chem Int Ed Engl ; 62(30): e202300681, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37026576

ABSTRACT

Photopharmacology is an attractive approach for achieving targeted drug action with the use of light. In photopharmacology, molecular photoswitches are introduced into the structure of biologically active small molecules to allow for the optical control of their potency. Going beyond trial and error, photopharmacology has progressively applied rational drug design methodologies to devise light-controlled bioactive ligands. In this review, we categorize photopharmacological efforts from the standpoint of medicinal chemistry strategies, focusing on diffusible photochromic ligands modified with photoswitches that operate through E-Z bond isomerization. In the vast majority of cases, photoswitchable ligands are designed as analogs of existing compounds, through a variety of approaches. By analyzing in detail a comprehensive list of instructive examples, we describe the state of the art and discuss future opportunities for rational design in photopharmacology.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Ligands
19.
Ned Tijdschr Geneeskd ; 1672023 03 13.
Article in Dutch | MEDLINE | ID: mdl-36920322

ABSTRACT

For millennia, humanity has been fascinated by the prospect of using visible light in medical applications. Nowadays, light is used in the clinic for intraoperative imaging and photodynamic therapy, among others. However, the precision of light delivery has also the potential to enable safe and targeted pharmacological treatments. This is the dream behind the emerging field of photopharmacology, which develops drugs whose activity can be regulated with light irradiation. Those photopharmacological drugs can be designed in two ways. Firstly, the drug can be "silenced" by attachment of a group that can be locally removed with light. Secondly, a molecular photoswitch can be inserted into a drug molecule to enable it switching on and off with different colours of light. In this article, a perspective is given on the basic principles and future of photopharmacology on its way to clinical applications.


Subject(s)
Photochemotherapy , Humans , Pharmaceutical Preparations
20.
Angew Chem Int Ed Engl ; 62(16): e202218203, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36800101

ABSTRACT

Light-induced 9,10-phenanthrenequinone-electron-rich alkene (PQ-ERA) photocycloadditions are an attractive new type of photoclick reaction, featuring fast conversions and high biocompatibility. However, the tunability of the reaction was hardly investigated up to now. To this end, we explored the influence of substituents on both reaction partners and the reaction rate between the PQs and ERAs. We identified new handles for functionalization and discovered that using enamines as ERAs leads to drastically enhanced rates (>5400 times faster), high photoreaction quantum yields (ΦP , up to 65 %), and multicolor emission output as well as a high fluorescence quantum yield of the adducts (ΦF , up to 97 %). Further investigation of the photophysical and photochemical properties provided insights to design orthogonal reaction systems both in solution and on nanoparticle surfaces for ultrafast chemoselective functionalization by photoclick reactions.

SELECTION OF CITATIONS
SEARCH DETAIL