Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
JMIR Med Inform ; 12: e50117, 2024 May 17.
Article En | MEDLINE | ID: mdl-38771237

Background: With the increasing availability of data, computing resources, and easier-to-use software libraries, machine learning (ML) is increasingly used in disease detection and prediction, including for Parkinson disease (PD). Despite the large number of studies published every year, very few ML systems have been adopted for real-world use. In particular, a lack of external validity may result in poor performance of these systems in clinical practice. Additional methodological issues in ML design and reporting can also hinder clinical adoption, even for applications that would benefit from such data-driven systems. Objective: To sample the current ML practices in PD applications, we conducted a systematic review of studies published in 2020 and 2021 that used ML models to diagnose PD or track PD progression. Methods: We conducted a systematic literature review in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines in PubMed between January 2020 and April 2021, using the following exact string: "Parkinson's" AND ("ML" OR "prediction" OR "classification" OR "detection" or "artificial intelligence" OR "AI"). The search resulted in 1085 publications. After a search query and review, we found 113 publications that used ML for the classification or regression-based prediction of PD or PD-related symptoms. Results: Only 65.5% (74/113) of studies used a holdout test set to avoid potentially inflated accuracies, and approximately half (25/46, 54%) of the studies without a holdout test set did not state this as a potential concern. Surprisingly, 38.9% (44/113) of studies did not report on how or if models were tuned, and an additional 27.4% (31/113) used ad hoc model tuning, which is generally frowned upon in ML model optimization. Only 15% (17/113) of studies performed direct comparisons of results with other models, severely limiting the interpretation of results. Conclusions: This review highlights the notable limitations of current ML systems and techniques that may contribute to a gap between reported performance in research and the real-life applicability of ML models aiming to detect and predict diseases such as PD.

2.
J Biomech ; 168: 112092, 2024 May.
Article En | MEDLINE | ID: mdl-38669795

Gait for individuals with movement disorders varies widely and the variability makes it difficult to assess outcomes of surgical and therapeutic interventions. Although specific joints can be assessed by fewer individual measures, gait depends on multiple parameters making an overall assessment metric difficult to determine. A holistic, summary measure can permit a standard comparison of progress throughout treatments and interventions, and permit more straightforward comparison across varied subjects. We propose a single summary metric (the Shriners Gait Index (SGI)) to represent the quality of gait using a deep learning autoencoder model, which helps to capture the nonlinear statistical relationships among a number of disparate gait metrics. We utilized gait data of 412 individuals under the age of 18 collected from the Motion Analysis Center (MAC) at the Shriners Children's - Chicago. The gait data includes a total of 114 features: temporo-spatial parameters (7), lower extremity kinematics (64), and lower extremity kinetics (43) which were min-max normalized. The developed SGI score captured more than 89% variance of all 144 features using subject-wise cross-validation. Such summary metrics holistically quantify an individual's gait which can then be used to assess the impact of therapeutic interventions. The machine learning approach utilized can be leveraged to create such metrics in a variety of contexts depending on the data available. We also utilized the SGI to compare overall changes to gait after surgery with the goal of improving mobility for individuals with gait disabilities such as Cerebral Palsy.


Cerebral Palsy , Gait , Humans , Cerebral Palsy/surgery , Cerebral Palsy/physiopathology , Child , Gait/physiology , Female , Male , Biomechanical Phenomena , Adolescent , Child, Preschool , Gait Analysis/methods , Treatment Outcome , Deep Learning , Lower Extremity/surgery , Lower Extremity/physiopathology
3.
Bioengineering (Basel) ; 9(10)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36290540

We created an overall assessment metric using a deep learning autoencoder to directly compare clinical outcomes in a comparison of lower limb amputees using two different prosthetic devices­a mechanical knee and a microprocessor-controlled knee. Eight clinical outcomes were distilled into a single metric using a seven-layer deep autoencoder, with the developed metric compared to similar results from principal component analysis (PCA). The proposed methods were used on data collected from ten participants with a dysvascular transfemoral amputation recruited for a prosthetics research study. This single summary metric permitted a cross-validated reconstruction of all eight scores, accounting for 83.29% of the variance. The derived score is also linked to the overall functional ability in this limited trial population, as improvements in each base clinical score led to increases in this developed metric. There was a highly significant increase in this autoencoder-based metric when the subjects used the microprocessor-controlled knee (p < 0.001, repeated measures ANOVA). A traditional PCA metric led to a similar interpretation but captured only 67.3% of the variance. The autoencoder composite score represents a single-valued, succinct summary that can be useful for the holistic assessment of highly variable, individual scores in limited clinical datasets.

4.
Front Med (Lausanne) ; 8: 645293, 2021.
Article En | MEDLINE | ID: mdl-33842509

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, but it is often diagnosed after the majority of dopaminergic cells are already damaged. It is critical to develop biomarkers to identify the disease as early as possible for early intervention. PD patients appear to have an altered pupillary response consistent with an abnormality in photoreceptive retinal ganglion cells. Tracking the pupil size manually is a tedious process and offline automated systems can be prone to errors that may require intervention; for this reason in this work we describe a system for pupil size estimation with a user interface to allow rapid adjustment of parameters and extraction of pupil parameters of interest for the present study. We implemented a user-friendly system designed for clinicians to automate the process of tracking the pupil diameter to measure the post-illumination pupillary response (PIPR), permit manual corrections when needed, and continue automation after correction. Tracking was automated using a Kalman filter estimating the pupil center and diameter over time. The resulting system was tested on a PD classification task in which PD subjects are known to have similar responses for two wavelengths of light. The pupillary response is measured in the contralateral eye to two different light stimuli (470 and 610 nm) for 19 PD and 10 control subjects. The measured Net PIPR indicating different responsiveness to the wavelengths was 0.13 mm for PD subjects and 0.61 mm for control subjects, demonstrating a highly significant difference (p < 0.001). Net PIPR has the potential to be a biomarker for PD, suggesting further study to determine clinical validity.

5.
J Healthc Eng ; 2020: 8869134, 2020.
Article En | MEDLINE | ID: mdl-33101617

Measuring physical activity using wearable sensors is essential for quantifying adherence to exercise regiments in clinical research and motivating individuals to continue exercising. An important aspect of wearable activity tracking is counting particular movements. One limitation of many previous models is the need to design the counting for a specific exercise. However, during physical therapy, some movements are unique to the patient and also valuable to track. To address this, we create an automatic repetition counting system that is flexible enough to measure multiple distinct and repeating movements during physical therapy without being trained on the specific motion. Accelerometers, using smartphones, were attached to the body or held by participants to track repetitive motions during different exercises. 18 participants completed a series of 10 exercises for 30 seconds, including arm circles, bicep curls, bridges, sit-ups, elbow extensions, leg lifts, lunges, push-ups, squats, and upper trunk rotations. To count the repetitions of each exercise, we apply three analysis techniques: (a) threshold crossing, (b) threshold crossing with a low-pass filter, and (c) Fourier transform. The results demonstrate that arm circles and push-ups can be tracked well, while less periodic and irregular motions such as upper trunk rotations are more difficult. Overall, threshold crossing with low-pass filtering achieves the best performance among these methods. We conclude that the proposed automatic counting system is capable of tracking exercise repetition without prior training and development for that activity.


Exercise Therapy , Exercise , Accelerometry , Humans , Muscle, Skeletal , Smartphone
...