Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 172: 234-248, 2023 12.
Article in English | MEDLINE | ID: mdl-37866722

ABSTRACT

In cases of blinding disease or trauma, hydrogels have been proposed as scaffolds for corneal regeneration and vehicles for ocular drug delivery. Restoration of corneal transparency, augmenting a thin cornea and postoperative drug delivery are particularly challenging in resource-limited regions where drug availability and patient compliance may be suboptimal. Here, we report a bioengineered hydrogel based on porcine skin collagen as an alternative to human donor corneal tissue for applications where long-term stability of the hydrogel is required. The hydrogel is reinforced with cellulose nanofibers extracted from the Ciona intestinalis sea invertebrate followed by double chemical and photochemical crosslinking. The hydrogel is additionally loaded with dexamethasone to provide sustained anti-inflammatory activity. The reinforced double-crosslinked hydrogel after drug loading maintained high optical transparency with significantly improved mechanical characteristics compared to non-reinforced hydrogels, while supporting a gradual sustained drug release for 60 days in vitro. Dexamethasone, after exposure to crosslinking and sterilization procedures used in hydrogel production, inhibited tube formation and cell migration of TNFα-stimulated vascular endothelial cells. The drug-loaded hydrogels suppressed key pro-inflammatory cytokines CCL2 and CXCL5 in TNFα-stimulated human corneal epithelial cells. Eight weeks after intra-stromal implantation in the cornea of 12 New-Zealand white rabbits subjected to an inflammatory suture stimulus, the dexamethasone-releasing hydrogels suppressed TNFα, MMP-9, and leukocyte and fibroblast cell invasion, resulting in reduced corneal haze, sustained corneal thickness and stromal morphology, and reduced overall vessel invasion. This collagen-nanocellulose double-crosslinked hydrogel can be implanted to treat corneal stromal disease while suppressing inflammation and maintaining transparency after corneal transplantation. STATEMENT OF SIGNIFICANCE: To treat blinding diseases, hydrogel scaffolds have been proposed to facilitate corneal restoration and ocular drug delivery. Here, we improve on a clinically tested collagen-based scaffold to improve mechanical robustness and enzymatic resistance by incorporating sustainably sourced nanocellulose and dual chemical-photochemical crosslinking to reinforce the scaffold, while simultaneously achieving sustained release of an incorporated anti-inflammatory drug, dexamethasone. Evaluated in the context of a corneal disease model with inflammation, the drug-releasing nanocellulose-reinforced collagen scaffold maintained the cornea's transparency and resisted degradation while suppressing inflammation postoperatively. This biomaterial could therefore potentially be applied in a wider range of sight-threatening diseases, overcoming suboptimal administration of postoperative medications to maintain hydrogel integrity and good vision.


Subject(s)
Endothelial Cells , Tumor Necrosis Factor-alpha , Humans , Animals , Rabbits , Hydrogels/pharmacology , Cornea , Collagen/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation , Dexamethasone/pharmacology
2.
Nat Biotechnol ; 41(1): 70-81, 2023 01.
Article in English | MEDLINE | ID: mdl-35953672

ABSTRACT

Visual impairment from corneal stromal disease affects millions worldwide. We describe a cell-free engineered corneal tissue, bioengineered porcine construct, double crosslinked (BPCDX) and a minimally invasive surgical method for its implantation. In a pilot feasibility study in India and Iran (clinicaltrials.gov no. NCT04653922 ), we implanted BPCDX in 20 advanced keratoconus subjects to reshape the native corneal stroma without removing existing tissue or using sutures. During 24 months of follow-up, no adverse event was observed. We document improvements in corneal thickness (mean increase of 209 ± 18 µm in India, 285 ± 99 µm in Iran), maximum keratometry (mean decrease of 13.9 ± 7.9 D in India and 11.2 ± 8.9 D in Iran) and visual acuity (to a mean contact-lens-corrected acuity of 20/26 in India and spectacle-corrected acuity of 20/58 in Iran). Fourteen of 14 initially blind subjects had a final mean best-corrected vision (spectacle or contact lens) of 20/36 and restored tolerance to contact lens wear. This work demonstrates restoration of vision using an approach that is potentially equally effective, safer, simpler and more broadly available than donor cornea transplantation.


Subject(s)
Keratoconus , Animals , Corneal Topography , Follow-Up Studies , Keratoconus/surgery , Prospective Studies , Refraction, Ocular , Swine , Tissue Engineering , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...