Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurosci Res ; 156: 178-187, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31758974

ABSTRACT

In the present study, we attempted to characterize two characteristic features within the dynamic behavior of wideband electrocorticography data, which were recorded as the brain waves of epilepsy, comprising high-frequency oscillations (HFOs) and interictal epileptic slow (red slow). The results of power spectrum and nonlinear time series analysis indicate that, on one hand, HFOs at epileptic focus are characterized by one-dimensional dynamical systems in ictal onset time segments at an epileptic focus for two patients' datasets; on the other hand, an interictal epileptic slow is characterized by the residue of power spectrum. The results suggest that the degree of freedom of the brain dynamics during epileptic seizure with HFO degenerates to low-dimensional dynamics; hence, the interictal epileptic slow as the precursors of the seizure onset can be detected simply from interictal brain wave data for the dataset of one patient. Therefore, our results are essential to understand the brain dynamics in epilepsy.


Subject(s)
Brain Waves , Epilepsy , Brain , Electrocorticography , Electroencephalography , Humans , Seizures
2.
Cogn Neurodyn ; 5(1): 1-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-22379491

ABSTRACT

We study collective behaviors of diffusively coupled oscillators which exhibit out-of-phase synchrony for the case of weakly interacting two oscillators. In large populations of such oscillators interacting via one-dimensionally nearest neighbor couplings, there appear various collective behaviors depending on the coupling strength, regardless of the number of oscillators. Among others, we focus on an intermittent behavior consisting of the all-synchronized state, a weakly chaotic state and some sorts of metachronal waves. Here, a metachronal wave means a wave with orderly phase shifts of oscillations. Such phase shifts are produced by the dephasing interaction which produces the out-of-phase synchronized states in two coupled oscillators. We also show that the abovementioned intermittent behavior can be interpreted as in-out intermittency where two saddles on an invariant subspace, the all-synchronized state and one of the metachronal waves play an important role.

3.
J Integr Neurosci ; 3(2): 159-82, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15285053

ABSTRACT

We investigate the dynamic character of a network of electrotonically coupled cells consisting of class I point neurons, in terms of a finite dimensional dynamical system. We classify a subclass of class I point neurons, called class I* point neurons. Based on this classification, we use a reduced Hindmarsh-Rose (H-R) model, which consists of two dynamical variables, to construct a network model consisting of electrotonically coupled H-R neurons. Although biologically simple, the system is sufficient to extract the essence of the complex dynamics, which the system may yield under certain physiological conditions. The network model produces a transitory behavior as well as a periodic motion and spatio-temporal chaos. The transitory dynamics that the network model exhibits is shown numerically to be chaotic itinerancy. The transitions appear between various metachronal waves and all-synchronization states. The network model shows that this transitory dynamics can be viewed as a chaotic switch between synchronized and desynchronized states. Despite the use of spatially discrete point neurons as basic elements of the network, the overall dynamics exhibits scale-free activity including various scales of spatio-temporal patterns.


Subject(s)
Brain/cytology , Cortical Synchronization , Neural Networks, Computer , Neurons/physiology , Nonlinear Dynamics , Action Potentials/physiology , Animals , Computer Simulation , Electronics/methods , Humans , Models, Neurological , Neurons/classification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL