Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 546, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822256

ABSTRACT

BACKGROUND: Oral candidiasis (OC) is a prevalent opportunistic infection in patients with human immunodeficiency virus (HIV) infection. The increasing resistance to antifungal agents in HIV-positive individuals suffering from OC raised concerns. Thus, this study aimed to investigate the prevalence of drug-resistant OC in HIV-positive patients. METHODS: Pubmed, Web of Science, Scopus, and Embase databases were systematically searched for eligible articles up to November 30, 2023. Studies reporting resistance to antifungal agents in Candida species isolated from HIV-positive patients with OC were included. Baseline characteristics, clinical features, isolated Candida species, and antifungal resistance were independently extracted by two reviewers. The pooled prevalence with a 95% confidence interval (CI) was calculated using the random effect model or fixed effect model. RESULTS: Out of the 1942 records, 25 studies consisting of 2564 Candida species entered the meta-analysis. The pooled prevalence of resistance to the antifungal agents was as follows: ketoconazole (25.5%, 95% CI: 15.1-35.8%), fluconazole (24.8%, 95% CI: 17.4-32.1%), 5-Flucytosine (22.9%, 95% CI: -13.7-59.6%), itraconazole (20.0%, 95% CI: 10.0-26.0%), voriconazole (20.0%, 95% CI: 1.9-38.0%), miconazole (15.0%, 95% CI: 5.1-26.0%), clotrimazole (13.4%, 95% CI: 2.3-24.5%), nystatin (4.9%, 95% CI: -0.05-10.3%), amphotericin B (2.9%, 95% CI: 0.5-5.3%), and caspofungin (0.1%, 95% CI: -0.3-0.6%). Furthermore, there were high heterogeneities among almost all included studies regarding the resistance to different antifungal agents (I2 > 50.00%, P < 0.01), except for caspofungin (I2 = 0.00%, P = 0.65). CONCLUSIONS: Our research revealed that a significant number of Candida species found in HIV-positive patients with OC were resistant to azoles and 5-fluocytosine. However, most of the isolates were susceptible to nystatin, amphotericin B, and caspofungin. This suggests that initial treatments for OC, such as azoles, may not be effective. In such cases, healthcare providers may need to consider prescribing alternative treatments like polyenes and caspofungin. REGISTRATION: The study protocol was registered in the International Prospective Register of Systematic Reviews as PROSPERO (Number: CRD42024497963).


Subject(s)
Antifungal Agents , Candida , Candidiasis, Oral , Drug Resistance, Fungal , HIV Infections , Humans , Candidiasis, Oral/microbiology , Candidiasis, Oral/drug therapy , Candidiasis, Oral/epidemiology , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , HIV Infections/complications , HIV Infections/microbiology , Candida/drug effects , Candida/isolation & purification , Candida/classification , Prevalence , Microbial Sensitivity Tests , AIDS-Related Opportunistic Infections/microbiology , AIDS-Related Opportunistic Infections/epidemiology , AIDS-Related Opportunistic Infections/drug therapy , Fluconazole/therapeutic use , Fluconazole/pharmacology
2.
Braz J Microbiol ; 53(4): 1761-1779, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36306113

ABSTRACT

Meyerozyma guilliermondii has been accepted as a complex composed of Meyerozyma guilliermondii, Meyerozyma carpophila, and Meyerozyma caribbica. M. guilliermondii is a saprophyte detected on human mucosa and skin. It can lead to serious infections in patients with risk factors like chemotherapy, immunodeficiency, gastrointestinal or cardiovascular surgery, and oncology disorders. Most deaths related to M. guilliermondii infections occur in individuals with malignancy. In recent decades, incidence of M. guilliermondii infections is increased. Sensitivity of this microorganism to conventional antifungals (e.g., amphotericin B, fluconazole, micafungin and anidulafungin) was reduced. Prophylactic and empirical uses of these drugs are linked to elevated minimal inhibitory concentrations (MICs) of M. guilliermondii. Drug resistance has concerned many researchers across the world. They are attempting to discover appropriate solution to combat this challenge. This study reviews the most important mechanisms of resistance to antifungals developed by in M. guilliermondii species complex.


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fluconazole/pharmacology , Amphotericin B/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...