Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 16872, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043900

ABSTRACT

Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.


Subject(s)
Cell Membrane , Cnidarian Venoms , Cytosol , Sphingomyelins , Sphingomyelins/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Animals , Cnidarian Venoms/metabolism , Cnidarian Venoms/genetics , Humans , Sea Anemones/metabolism , Sea Anemones/genetics , Cholesterol/metabolism
2.
Front Immunol ; 15: 1401294, 2024.
Article in English | MEDLINE | ID: mdl-38720899

ABSTRACT

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Subject(s)
Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Phagocytosis , Phagocytes/immunology , Phagocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Cell Membrane/metabolism , Protein Binding
3.
EMBO Rep ; 25(4): 1708-1710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503877

Subject(s)
Lactic Acid , Pain , Humans , Organelles
4.
Nat Commun ; 15(1): 220, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212328

ABSTRACT

Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.


Subject(s)
Lipoylation , trans-Golgi Network , trans-Golgi Network/metabolism , Microscopy , Single Molecule Imaging , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cholesterol , Cluster Analysis , Immunity, Innate
6.
Trends Cell Biol ; 34(7): 606-616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38104013

ABSTRACT

Autophagy is a self-catabolic process through which cellular components are delivered to lysosomes for degradation. There are three types of autophagy, i.e., macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. In macroautophagy, a portion of the cytoplasm is wrapped by the autophagosome, which then fuses with lysosomes and delivers the engulfed cytoplasm for degradation. In CMA, the translocation of cytosolic substrates to the lysosomal lumen is directly across the limiting membrane of lysosomes. In microautophagy, lytic organelles, including endosomes or lysosomes, take up a portion of the cytoplasm directly. Although macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become evident that microautophagy plays a variety of cellular roles from yeast to mammals. Here we review the very recent updates of microautophagy. In particular, we focus on the feature of the degradative substrates and the molecular machinery that mediates microautophagy.


Subject(s)
Lysosomes , Microautophagy , Lysosomes/metabolism , Animals , Humans , Mammals/metabolism , Autophagy , Autophagosomes/metabolism
7.
Sci Rep ; 13(1): 19740, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957190

ABSTRACT

Yes-associated protein (YAP) is a transcriptional coactivator that is essential for the malignancy of various cancers. We have previously shown that YAP activity is positively regulated by phosphatidylserine (PS) in recycling endosomes (REs). However, the mechanism by which YAP is activated by PS in REs remains unknown. In the present study, we examined a group of protein phosphatases (11 phosphatases) that we had identified previously as PS-proximity protein candidates. Knockdown experiments of these phosphatases suggested that PPP1R12A, a regulatory subunit of the myosin phosphatase complex, was essential for YAP-dependent proliferation of triple-negative breast cancer MDA-MB-231 cells. Knockdown of PPP1R12A increased the level of phosphorylated YAP, reduced that of YAP in the nucleus, and suppressed the transcription of CTGF (a YAP-regulated gene), reinforcing the role of PPP1R12A in YAP activation. ATP8A1 is a PS-flippase that concentrates PS in the cytosolic leaflet of the RE membrane and positively regulates YAP signalling. In subcellular fractionation experiments using cell lysates, PPP1R12A in control cells was recovered exclusively in the microsomal fraction. In contrast, a fraction of PPP1R12A in ATP8A1-depleted cells was recovered in the cytosolic fraction. Cohort data available from the Cancer Genome Atlas showed that high expression of PPP1R12A, PP1B encoding the catalytic subunit of the myosin phosphatase complex, or ATP8A1 correlated with poor prognosis in breast cancer patients. These results suggest that the "ATP8A1-PS-YAP phosphatase" axis in REs facilitates YAP activation and thus cell proliferation.


Subject(s)
Phosphoric Monoester Hydrolases , Signal Transduction , Humans , Phosphoric Monoester Hydrolases/metabolism , Myosin-Light-Chain Phosphatase/genetics , Myosin-Light-Chain Phosphatase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Endosomes/metabolism , Cell Proliferation , Adenosine Triphosphatases/metabolism , Phospholipid Transfer Proteins/metabolism
8.
J Biochem ; 174(6): 483-490, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37562849

ABSTRACT

The cGAS-STING innate immune pathway has recently emerged as a critical driver of inflammation in a variety of settings, such as virus infection, cellular stress and tissue damage. The pathway detects microbial and host-derived double-stranded DNA (dsDNA) in the cytosol, and triggers the production of the type I interferons through the activation of IRF3. The detailed mechanistic and biochemical understanding of the pathway has enabled the development of pharmacological agents for the treatment of chronic inflammation and cancer. STING is an endoplasmic reticulum (ER)-localized transmembrane protein. Upon emergence of cytosolic dsDNA, STING exits the ER and migrates sequentially to the Golgi, recycling endosomes and lysosomes. Importantly, the intracellular translocation of STING is essential for the activation and inactivation of the STING signalling. In this review, I summarize the recent insights into the regulators of the membrane traffic of STING and STING-associated autoinflammatory diseases.


Subject(s)
Membrane Proteins , Signal Transduction , Humans , Signal Transduction/physiology , Membrane Proteins/metabolism , Protein Transport , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA/metabolism , Inflammation , Immunity, Innate
9.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37462944

ABSTRACT

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Subject(s)
Histiocytosis , Toll-Like Receptor 7 , Animals , Mice , Cytokines/genetics , Histiocytosis/genetics , Mutation/genetics , Nucleosides , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics
10.
Cell Struct Funct ; 48(2): 161-174, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37482421

ABSTRACT

Invadopodia are protrusive structures that mediate the extracellular matrix (ECM) degradation required for tumor invasion and metastasis. Rho small GTPases regulate invadopodia formation, but the molecular mechanisms of how Rho small GTPase activities are regulated at the invadopodia remain unclear. Here we have identified FilGAP, a GTPase-activating protein (GAP) for Rac1, as a negative regulator of invadopodia formation in tumor cells. Depletion of FilGAP in breast cancer cells increased ECM degradation and conversely, overexpression of FilGAP decreased it. FilGAP depletion promoted the formation of invadopodia with ECM degradation. In addition, FilGAP depletion and Rac1 overexpression increased the emergence of invadopodia induced by epidermal growth factor, whereas FilGAP overexpression suppressed it. Overexpression of GAP-deficient FilGAP mutant enhanced invadopodia emergence as well as FilGAP depletion. The pleckstrin-homology (PH) domain of FilGAP binds phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], which is distributed on membranes of the invadopodia. FilGAP localized to invadopodia in breast cancer cells on the ECM, but FilGAP mutant lacking PI(3,4)P2-binding showed low localization. Similarly, the decrease of PI(3,4)P2 production reduced the FilGAP localization. Our results suggest that FilGAP localizes to invadopodia through its PH domain binding to PI(3,4)P2 and down-regulates invadopodia formation by inactivating Rac1, inhibiting ECM degradation in invasive tumor cells.Key words: invadopodia, breast carcinoma, Rac1, FilGAP, PI(3,4)P2.


Subject(s)
Breast Neoplasms , Podosomes , Humans , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Podosomes/metabolism , Podosomes/pathology , rho GTP-Binding Proteins/metabolism , Cell Line, Tumor , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
11.
Nature ; 618(7967): 1085-1093, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286611

ABSTRACT

G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and ß-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than ß-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Imidazolidines , Receptors, G-Protein-Coupled , Humans , Allosteric Regulation , beta-Arrestins/metabolism , Binding Sites , Cryoelectron Microscopy , Drug Development , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Imidazolidines/chemistry , Imidazolidines/pharmacology , Ligands , Models, Molecular , Protein Conformation/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/classification , Receptors, G-Protein-Coupled/ultrastructure , Signal Transduction
12.
Nat Cell Biol ; 25(3): 453-466, 2023 03.
Article in English | MEDLINE | ID: mdl-36918692

ABSTRACT

Stimulator of interferon genes (STING) is essential for the type I interferon response against a variety of DNA pathogens. Upon emergence of cytosolic DNA, STING translocates from the endoplasmic reticulum to the Golgi where STING activates the downstream kinase TBK1, then to lysosome through recycling endosomes (REs) for its degradation. Although the molecular machinery of STING activation is extensively studied and defined, the one underlying STING degradation and inactivation has not yet been fully elucidated. Here we show that STING is degraded by the endosomal sorting complexes required for transport (ESCRT)-driven microautophagy. Airyscan super-resolution microscopy and correlative light/electron microscopy suggest that STING-positive vesicles of an RE origin are directly encapsulated into Lamp1-positive compartments. Screening of mammalian Vps genes, the yeast homologues of which regulate Golgi-to-vacuole transport, shows that ESCRT proteins are essential for the STING encapsulation into Lamp1-positive compartments. Knockdown of Tsg101 and Vps4, components of ESCRT, results in the accumulation of STING vesicles in the cytosol, leading to the sustained type I interferon response. Knockdown of Tsg101 in human primary T cells leads to an increase the expression of interferon-stimulated genes. STING undergoes K63-linked ubiquitination at lysine 288 during its transit through the Golgi/REs, and this ubiquitination is required for STING degradation. Our results reveal a molecular mechanism that prevents hyperactivation of innate immune signalling, which operates at REs.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Interferon Type I , Membrane Proteins , Animals , Humans , Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Microautophagy , Protein Transport , Signal Transduction , Membrane Proteins/genetics , Membrane Proteins/metabolism
13.
Cell Struct Funct ; 48(1): 59-70, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36575042

ABSTRACT

Stimulator of interferon genes (STING) is an ER-localized transmembrane protein and the receptor for 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which is a second messenger produced by cGAMP synthase (cGAS), a cytosolic double-stranded DNA sensor. The cGAS-STING pathway plays a critical role in the innate immune response to infection of a variety of DNA pathogens through the induction of the type I interferons. Pharmacological activation of STING is a promising therapeutic strategy for cancer, thus the development of potent and selective STING agonists has been pursued. Here we report that mouse STING can be activated by phenylarsine oxide (PAO), a membrane permeable trivalent arsenic compound that preferentially reacts with thiol group of cysteine residue (Cys). The activation of STING with PAO does not require cGAS or cGAMP. Mass spectrometric analysis of the peptides generated by trypsin and chymotrypsin digestion of STING identifies several PAO adducts, suggesting that PAO covalently binds to STING. Screening of STING variants with single Cys to serine residues (Ser) reveals that Cys88 and Cys291 are critical to the response to PAO. STING activation with PAO, as with cGAMP, requires the ER-to-Golgi traffic and palmitoylation of STING. Our results identify a non-nucleotide STING agonist that does not target the cGAMP-binding pocket, and demonstrate that Cys of STING can be a novel target for the development of STING agonist.Key words: STING agonist, cysteine modification, innate immunity, phenylarsine oxide.


Subject(s)
Cysteine , Signal Transduction , Mice , Animals , Membrane Proteins/metabolism , Immunity, Innate , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA
14.
Front Cell Dev Biol ; 10: 1037999, 2022.
Article in English | MEDLINE | ID: mdl-36438571

ABSTRACT

Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from viruses or self-DNA from mitochondria/nuclei. Recently, gain-of-function mutations in STING have been identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). The SAVI patients exhibit complex systemic vascular inflammation and interstitial lung disease, resulting in pulmonary fibrosis and respiratory failure. SAVI mouse models have recently developed, harbouring common SAVI mutations, such as N153S and V154M, which correspond to the human N154S and V155M, respectively. Interestingly, crosses of heterozygous SAVI mice did not yield homozygous SAVI mice as of embryonic day 14, indicating that homozygous SAVI embryos were not viable and that wild-type (WT) allele would function dominantly over SAVI alleles in terms of viability. However, the molecular mechanism underlying the dominance has not been understood. In the present study, we show that STING (WT) and STING (SAVI) can form heterocomplex. The heterocomplex localized primarily in the endoplasmic reticulum (ER) and failed to reach the trans-Golgi network (TGN), where STING activates the downstream kinase TBK1. SURF4 is the essential protein functioning in the retrieval of STING from the Golgi to the ER. The amount of SURF4 bound to STING (SAVI) significantly increased in the presence of STING (WT). These results suggest that STING (WT) can suppress the activity of STING (SAVI) by tethering STING (SAVI) to the ER through heterocomplex formation. The dormant heterocomplex formation may underlie, at least in part, the dominance of STING WT allele over SAVI alleles in the STING-triggered inflammatory response.

15.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35482294

ABSTRACT

Mutations in the C-terminal region of the CDC42 gene cause severe neonatal-onset autoinflammation. Effectiveness of IL-1ß-blocking therapy indicates that the pathology involves abnormal inflammasome activation; however, the mechanism underlying autoinflammation remains to be elucidated. Using induced-pluripotent stem cells established from patients carrying CDC42R186C, we found that patient-derived cells secreted larger amounts of IL-1ß in response to pyrin-activating stimuli. Aberrant palmitoylation and localization of CDC42R186C protein to the Golgi apparatus promoted pyrin inflammasome assembly downstream of pyrin dephosphorylation. Aberrant subcellular localization was the common pathological feature shared by CDC42 C-terminal variants with inflammatory phenotypes, including CDC42*192C*24 that also localizes to the Golgi apparatus. Furthermore, the level of pyrin inflammasome overactivation paralleled that of mutant protein accumulation in the Golgi apparatus, but not that of the mutant GTPase activity. These results reveal an unexpected association between CDC42 subcellular localization and pyrin inflammasome activation that could pave the way for elucidating the mechanism of pyrin inflammasome formation.


Subject(s)
Golgi Apparatus , Inflammasomes , Golgi Apparatus/metabolism , Humans , Inflammasomes/metabolism , Pyrin/genetics , Pyrin/metabolism
16.
Cell Struct Funct ; 47(1): 19-30, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35125375

ABSTRACT

Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA or self-DNA leaked from mitochondria/nuclei. In response to the emergence of such DNAs in the cytosol, STING relocates from the endoplasmic reticulum (ER) to the Golgi, and activates TANK-binding kinase 1 (TBK1), a cytosolic kinase essential for the activation of STING-dependent downstream signalling. To understand at which subcellular compartments TBK1 becomes associated with STING, we generated cells stably expressing fluorescent protein-tagged STING (mNeonGreen-STING) and TBK1 (TBK1-mScarletI). We found that after STING stimulation, TBK1 became associated with the trans-Golgi network (TGN), not the other parts of the Golgi. STING variants that constitutively induce the type I interferon response have been identified in patients with autoinflammatory diseases named "STING-associated vasculopathy with onset in infancy (SAVI)". Even in cells expressing these constitutively active STING variants, TBK1 was found to be associated with TGN, not the other parts of the Golgi. These results suggest that TGN acts as a specific platform where STING associates with and activates TBK1.Key words: the Golgi, membrane traffic, innate immunity, STING.


Subject(s)
Membrane Proteins , Protein Serine-Threonine Kinases , trans-Golgi Network , Endoplasmic Reticulum , Golgi Apparatus , Humans , Immunity, Innate , Membrane Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction
17.
ACS Nano ; 16(1): 885-896, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34978188

ABSTRACT

Rapid and efficient isolation of intact lysosomes is necessary to study their functions and metabolites by proteomic analysis. We developed a swift and robust nanoparticle-based magnetic separation method in which magnetic-plasmonic hybrid nanoparticles (MPNPs) conjugated with amino dextran (aDxt) were targeted to the lumen of lysosomes via the endocytosis pathway. For well-directed magnetic separation of the lysosomes, it is important to trace the intracellular trafficking of the aDxt-conjugated MPNPs (aDxt-MPNPs) in the endocytosis pathway. Therefore, we analyzed the intracellular transport process of the aDxt-MPNPs by investigating the time-dependent colocalization of plasmonic scattering of aDxt-MPNPs and immunostained marker proteins of organelles using the threshold Manders' colocalization coefficient (Rt). Detailed analysis of time variations of Rt for early and late endosomes and lysosomes allowed us to derive the transport kinetics of aDxt-MPNPs in a cell. After confirming the incubation time required for sufficient accumulation of aDxt-MPNPs in lysosomes, the lysosomes were magnetically isolated as intact as possible. By varying the elapsed time from homogenization to complete isolation of lysosomes (tdelay) and temperature (T), the influences of tdelay and T on the protein composition of the lysosomes were investigated by polyacrylamide gel electrophoresis and amino acid analysis. We found that the intactness of lysosomes could become impaired quite quickly, and to isolate lysosomes as intact as possible with high purity, tdelay = 30 min and T = 4 °C were optimal settings.


Subject(s)
Endocytosis , Nanoparticles , Proteomics , Lysosomes/metabolism , Endosomes/chemistry , Magnetic Phenomena
18.
J Cell Biol ; 221(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34817532

ABSTRACT

Membrane contact sites (MCSs) serve as a zone for nonvesicular lipid transport by oxysterol-binding protein (OSBP)-related proteins (ORPs). ORPs mediate lipid countertransport, in which two distinct lipids are transported counterdirectionally. How such lipid countertransport controls specific biological functions, however, remains elusive. We report that lipid countertransport by ORP10 at ER-endosome MCSs regulates retrograde membrane trafficking. ORP10, together with ORP9 and VAP, formed ER-endosome MCSs in a phosphatidylinositol 4-phosphate (PI4P)-dependent manner. ORP10 exhibited a lipid exchange activity toward its ligands, PI4P and phosphatidylserine (PS), between liposomes in vitro, and between the ER and endosomes in situ. Cell biological analysis demonstrated that ORP10 supplies a pool of PS from the ER, in exchange for PI4P, to endosomes where the PS-binding protein EHD1 is recruited to facilitate endosome fission. Our study highlights a novel lipid exchange at ER-endosome MCSs as a nonenzymatic PI4P-to-PS conversion mechanism that organizes membrane remodeling during retrograde membrane trafficking.


Subject(s)
Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylserines/metabolism , Receptors, Steroid/metabolism , HEK293 Cells , HeLa Cells , Humans , Intracellular Membranes , Ligands , Liposomes , Protein Domains , Receptor, IGF Type 2/metabolism , Receptors, Steroid/chemistry , Vesicular Transport Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385317

ABSTRACT

The amino acid and oligopeptide transporter Solute carrier family 15 member A4 (SLC15A4), which resides in lysosomes and is preferentially expressed in immune cells, plays critical roles in the pathogenesis of lupus and colitis in murine models. Toll-like receptor (TLR)7/9- and nucleotide-binding oligomerization domain-containing protein 1 (NOD1)-mediated inflammatory responses require SLC15A4 function for regulating the mechanistic target of rapamycin complex 1 (mTORC1) or transporting L-Ala-γ-D-Glu-meso-diaminopimelic acid, IL-12: interleukin-12 (Tri-DAP), respectively. Here, we further investigated the mechanism of how SLC15A4 directs inflammatory responses. Proximity-dependent biotin identification revealed glycolysis as highly enriched gene ontology terms. Fluxome analyses in macrophages indicated that SLC15A4 loss causes insufficient biotransformation of pyruvate to the tricarboxylic acid cycle, while increasing glutaminolysis to the cycle. Furthermore, SLC15A4 was required for M1-prone metabolic change and inflammatory IL-12 cytokine productions after TLR9 stimulation. SLC15A4 could be in close proximity to AMP-activated protein kinase (AMPK) and mTOR, and SLC15A4 deficiency impaired TLR-mediated AMPK activation. Interestingly, SLC15A4-intact but not SLC15A4-deficient macrophages became resistant to fluctuations in environmental nutrient levels by limiting the use of the glutamine source; thus, SLC15A4 was critical for macrophage's respiratory homeostasis. Our findings reveal a mechanism of metabolic regulation in which an amino acid transporter acts as a gatekeeper that protects immune cells' ability to acquire an M1-prone metabolic phenotype in inflammatory tissues by mitigating metabolic stress.


Subject(s)
Gene Expression Regulation/physiology , Macrophages/physiology , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins/metabolism , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/metabolism , Animals , Cell Differentiation , Cell Line , Dendritic Cells/metabolism , Deoxyglucose/analogs & derivatives , Deoxyglucose/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Gene Expression Regulation/drug effects , Gene Silencing , Humans , Macrophages/drug effects , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Oligodeoxyribonucleotides/pharmacology
20.
Sci Rep ; 11(1): 11996, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099821

ABSTRACT

Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from virus or self-DNA from mitochondria/nuclei. In response to emergence of such DNAs in the cytosol, STING translocates from the endoplasmic reticulum to the Golgi, and activates TANK-binding kinase 1 (TBK1) at the trans-Golgi network (TGN). Activated TBK1 then phosphorylates STING at Ser365, generating an interferon regulatory factor 3-docking site on STING. How this reaction proceeds specifically at the TGN remains poorly understood. Here we report a cell-free reaction in which endogenous STING is phosphorylated by TBK1. The reaction utilizes microsomal membrane fraction prepared from TBK1-knockout cells and recombinant TBK1. We observed agonist-, TBK1-, "ER-to-Golgi" traffic-, and palmitoylation-dependent phosphorylation of STING at Ser365, mirroring the nature of STING phosphorylation in vivo. Treating the microsomal membrane fraction with sphingomyelinase or methyl-ß-cyclodextrin, an agent to extract cholesterol from membranes, suppressed the phosphorylation of STING by TBK1. Given the enrichment of sphingomyelin and cholesterol in the TGN, these results may provide the molecular basis underlying the specific phosphorylation reaction of STING at the TGN.


Subject(s)
Cholesterol/metabolism , Complex Mixtures/metabolism , DNA/metabolism , Phosphorylation/drug effects , Sphingomyelins/metabolism , CRISPR-Cas Systems , Cytosol/metabolism , Cytosol/ultrastructure , Endoplasmic Reticulum/metabolism , Gene Knockdown Techniques , Golgi Apparatus/metabolism , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Lipoylation , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , beta-Cyclodextrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL