Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Glob Antimicrob Resist ; 36: 175-180, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154747

ABSTRACT

OBJECTIVES: The contamination of fresh surface waters poses a significant burden on human health and prosperity, especially in marginalized communities with limited resources and inadequate infrastructure. Here, we performed in-depth genomic analyses of multidrug-resistant bacteria (MDR-B) isolated from Al-Oueik river water that is used for irrigation of agricultural fields in a disenfranchised area that also hosts a makeshift Syrian refugee camp. METHODS: A composite freshwater sample was filtered. Faecal coliforms were counted and extended spectrum cephalosporins and/or ertapenem resistant bacteria were screened. Isolates were identified using MALDI-TOF-MS and analysed using whole-genome sequencing (WGS) to identify the resistome, sequence types, plasmid types, and virulence genes. RESULTS: Approximately 106 CFU/100 mL of faecal coliforms were detected in the water. Four drug-resistant Gram-negative bacteria were identified, namely Escherichia coli, Klebsiella pneumoniae, Enterobacter hormaechei, and Pseudomonas otitidis. Notably, the E. coli isolate harboured blaNDM-5 and a YRIN-inserted PBP3, representing an emerging public health challenge. The K. pneumoniae isolate carried blaSHV-187 as well as mutations in the gene encoding the OmpK37 porin. Enterobacter hormaechei and P. otitidis harboured blaACT-16 and blaPOM-1, respectively. CONCLUSION: This report provides comprehensive genomic analyses of MDR-B in irrigation water in Lebanon. Our results further support that irrigation water contaminated with faecal material can be a reservoir of important MDR-B, which can spread to adjacent agricultural fields and other water bodies, posing both public health and food safety issues. Therefore, there is an urgent need to implement effective water quality monitoring and management programs to control the proliferation of antibiotic-resistant pathogens in irrigation water in Lebanon.


Subject(s)
Escherichia coli , Rivers , Humans , Escherichia coli/genetics , Rivers/microbiology , Enterobacter/genetics , Plasmids/genetics , Klebsiella pneumoniae/genetics , Gram-Negative Bacteria
3.
Int J Biol Macromol ; 246: 125660, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37399877

ABSTRACT

Currently, microbial bioactive substances (postbiotics) are considered a promising tool for achieving customer demand for natural preservatives. This study aimed to investigate the effectiveness of an edible coating developed by Malva sylvestris seed polysaccharide mucilage (MSM) and postbiotics from Saccharomyces cerevisiae var. boulardii ATCC MYA-796 (PSB) for the preservation of lamb meat. PSB were synthesized, and a gas chromatograph connected to a mass spectrometer and a Fourier transform infrared spectrometer were used to determine their chemical components and main functional groups, respectively. The Folin-Ciocalteu and aluminium chloride techniques were utilized to assess the total flavonoid and phenolic levels of PSB. Following that, PSB has been incorporated into the coating mixture, which contains MSM, and its potential radical scavenging and antibacterial activities on lamb meat samples were determined after 10 days of 4 °C storage. PSB contains 2-Methyldecane, 2-Methylpiperidine, phenol, 2,4-bis (1,1-dimethyl ethyl), 5,10-Diethoxy-2,3,7,8- tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d] pyrazine, and Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmethyl)-, (5'alpha) as well as various organic acids with significant radical scavenging activity (84.60 ± 0.62 %) and antibacterial action toward Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and Listeria innocua as foodborne pathogens. The edible PSB-MSM coating effectively reduced microbial growth and increased meat shelf life (> 10 days). When PSB solutions were added to the edible coating, the moisture content, pH value, and hardness of the samples were also more successfully maintained (P < 0.05). The PSB-MSM coating inhibited lipid oxidation in meat samples considerably and diminished the formation of primary as well as secondary oxidation intermediates (P < 0.05). Additionally, when MSM + 10 % PSB edible coating was utilized, the sensory properties of the samples were maintained more well during preservation. As a significance, the use of edible coatings based on PSB and MSM is efficient in decreasing microbiological and chemical degradation in lamb meat during preservation.


Subject(s)
Edible Films , Malva , Red Meat , Saccharomyces boulardii , Animals , Sheep , Food Preservation/methods , Saccharomyces cerevisiae , Red Meat/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Seeds/chemistry , Polysaccharides/pharmacology , Polysaccharides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...