Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Front Chem ; 12: 1451468, 2024.
Article in English | MEDLINE | ID: mdl-39246721

ABSTRACT

We synthesized ridaifen-B boron dipyrromethene (RID-B-BODIPY) using 2-methyl-6-nitro benzoic anhydride (MNBA)-mediated dehydration condensation reaction between amino alkyl-tethered RID and BODIPY FL. Comparative experiments between dicyclohexylcarbodiimide (DCC) and MNBA for their coupling reactions demonstrated that MNBA is an effective condensation reagent for amines and BODIPY FL. A cell staining study with RID-B-BODIPY showed intracellular localization of BODIPY FL fluorescence, attributed to the RID-B structure, indicating the successful development of a tool for analyzing intracellular molecular behavior efficiently.

2.
Hum Genomics ; 18(1): 93, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218908

ABSTRACT

BACKGROUND: Polygenic risk scores (PRS) derived from European individuals have reduced portability across global populations, limiting their clinical implementation at worldwide scale. Here, we investigate the performance of a wide range of PRS models across four ancestry groups (Africans, Europeans, East Asians, and South Asians) for 14 conditions of high-medical interest. METHODS: To select the best-performing model per trait, we first compared PRS performances for publicly available scores, and constructed new models using different methods (LDpred2, PRS-CSx and SNPnet). We used 285 K European individuals from the UK Biobank (UKBB) for training and 18 K, including diverse ancestries, for testing. We then evaluated PRS portability for the best models in Europeans and compared their accuracies with respect to the best PRS per ancestry. Finally, we validated the selected PRS models using an independent set of 8,417 individuals from Biobank of the Americas-Genomelink (BbofA-GL); and performed a PRS-Phewas. RESULTS: We confirmed a decay in PRS performances relative to Europeans when the evaluation was conducted using the best-PRS model for Europeans (51.3% for South Asians, 46.6% for East Asians and 39.4% for Africans). We observed an improvement in the PRS performances when specifically selecting ancestry specific PRS models (phenotype variance increase: 1.62 for Africans, 1.40 for South Asians and 0.96 for East Asians). Additionally, when we selected the optimal model conditional on ancestry for CAD, HDL-C and LDL-C, hypertension, hypothyroidism and T2D, PRS performance for studied populations was more comparable to what was observed in Europeans. Finally, we were able to independently validate tested models for Europeans, and conducted a PRS-Phewas, identifying cross-trait interplay between cardiometabolic conditions, and between immune-mediated components. CONCLUSION: Our work comprehensively evaluated PRS accuracy across a wide range of phenotypes, reducing the uncertainty with respect to which PRS model to choose and in which ancestry group. This evaluation has let us identify specific conditions where implementing risk-prioritization strategies could have practical utility across diverse ancestral groups, contributing to democratizing the implementation of PRS.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , White People/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Risk Factors , Asian People/genetics , Female , Models, Genetic , Genetic Risk Score
3.
Sci Transl Med ; 16(761): eadp9927, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167666

ABSTRACT

Immunological imprinting by ancestral SARS-CoV-2 strains is thought to impede the robust induction of Omicron-specific humoral responses by Omicron-based booster vaccines. Here, we analyzed the specificity and neutralization activity of memory B (Bmem) cells after repeated BA.5 exposure in individuals previously imprinted by ancestral strain-based mRNA vaccines. After a second BA.5 exposure, Bmem cells with BA.5 spike protein-skewed reactivity were promptly elicited, correlating with preexisting antibody titers. Clonal lineage analysis identified BA.5-skewed Bmem cells that had redirected their specificity from the ancestral strain to BA.5 through somatic hypermutations. Moreover, Bmem cells with redirected BA.5 specificity exhibited accelerated development compared with de novo Bmem cells derived from naïve repertoires. This redirected BA.5 specificity demonstrated greater resilience to viral point mutation and adaptation to recent Omicron variants HK.3 and JN.1, months after the second BA.5 exposure, suggesting that existing Bmem cells elicited by older vaccines can redirect their specificity toward newly evolving variants.


Subject(s)
COVID-19 , Memory B Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Humans , COVID-19/immunology , COVID-19/virology , Memory B Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology
4.
Front Immunol ; 15: 1395380, 2024.
Article in English | MEDLINE | ID: mdl-39040096

ABSTRACT

Introduction: The intestinal immune system plays a pivotal role in the induction of immune responses against food. In the case of T cell response, dendritic cells (DCs) are especially important. However, the regulation of immune responses to food by intestinal DCs has been poorly described. In this study, we analyzed the effect of Lactococcus lactis subsp. cremoris YRC3780, a lactic acid bacterial strain isolated from kefir, a traditional fermented milk product, on the immune responses induced by antigen presentation by intestinal DCs to T cells as well as the mechanism of action of these immunomodulatory effects. It has been shown that L. cremoris YRC3780 ameliorates the symptoms of pollinosis in both animal and human studies. Methods: CD11c+ cells from mesenteric lymph nodes (MLNs) of BALB/c mice were cultured as MLN DCs with L. cremoris YRC3780 and expression of genes inducing regulatory T cells (Tregs) was examined by qPCR. In addition, MLN DCs were cocultured with CD4+ T cells from DO11.10 transgenic mice expressing an ovalbumin (OVA)-specific TCR and the OVA antigen peptide and L. cremoris YRC3780. Induction of Tregs was examined by flow cytometry, gene expression was analyzed by DNA microarray and qPCR, and the production of cytokines was measured by ELISA. MLN DCs from TLR2-deficient mice and components of L. cremoris YRC3780 were used to examine the recognition of YRC3780 by MLN DCs. Results: L. cremoris YRC3780 enhanced the expression of genes involved in Treg induction in MLN DCs and induced Foxp3+CD4+T cells in an MLN DC and CD4+ T-cell co-culture system. The effect on MLN DCs was likely mediated by receptors other than TLR2. Together with microarray analyses of CD4+ T cell gene expression and cytokine ELISA, it was demonstrated that L. cremoris YRC3780 promoted the induction of Th1 and Tregs, and regulated the balance of Th1/Th2 and Treg/Th17 cells involving multiple genes via the antigen-presentation of MLN DCs. Discussion: Our findings provide insights into the modulation of intestinal immune responses mediated by DCs and the antiallergic effects of lactic acid bacteria.


Subject(s)
Cell Differentiation , Dendritic Cells , Lactococcus lactis , Lymph Nodes , Mice, Inbred BALB C , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Dendritic Cells/immunology , Mice , Lymph Nodes/immunology , Lactococcus lactis/immunology , Cell Differentiation/immunology , Mesentery/immunology , Cytokines/metabolism , Mice, Transgenic , Lymphocyte Activation/immunology , Coculture Techniques , Female
5.
Sci Adv ; 9(24): eadf0661, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315144

ABSTRACT

Severe acute respiratory syndrome coronavirus 2-neutralizing antibodies primarily target the spike receptor binding domain (RBD). However, B cell antigen receptors (BCRs) on RBD-binding memory B (Bmem) cells have variation in the neutralizing activities. Here, by combining single Bmem cell profiling with antibody functional assessment, we dissected the phenotype of Bmem cell harboring the potently neutralizing antibodies in coronavirus disease 2019 (COVID-19)-convalescent individuals. The neutralizing subset was marked by an elevated CD62L expression and characterized by distinct epitope preference and usage of convergent VH (variable region of immunoglobulin heavy chain) genes, accounting for the neutralizing activities. Concordantly, the correlation was observed between neutralizing antibody titers in blood and CD62L+ subset, despite the equivalent RBD binding of CD62L+ and CD62L- subset. Furthermore, the kinetics of CD62L+ subset differed between the patients who recovered from different COVID-19 severities. Our Bmem cell profiling reveals the unique phenotype of Bmem cell subset that harbors potently neutralizing BCRs, advancing our understanding of humoral protection.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , L-Selectin , Humans , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2
6.
Nat Commun ; 14(1): 1451, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922492

ABSTRACT

The immunogenicity of mRNA vaccines has not been well studied when compared to different vaccine modalities in the context of additional boosters. Here we show that longitudinal analysis reveals more sustained SARS-CoV-2 spike receptor-binding domain (RBD)-binding IgG titers with the breadth to antigenically distinct variants by the S-268019-b spike protein booster compared to the BNT162b2 mRNA homologous booster. The durability and breadth of RBD-angiotensin-converting enzyme 2 (ACE2) binding inhibitory antibodies are pronounced in the group without systemic adverse events (AEs) after the S-268019-b booster, leading to the elevated neutralizing activities against Omicron BA.1 and BA.5 variants in the stratified group. In contrast, BNT162b2 homologous booster elicited antibodies to spike N-terminal domain in proportion to the AE scores. High-dimensional immune profiling identifies early CD16+ natural killer cell dynamics with CCR3 upregulation, as one of the correlates for the distinct anti-RBD antibody responses by the S-268019-b booster. Our results illustrate the combinational effects of heterologous booster on the immune dynamics and the durability and breadth of recalled anti-RBD antibody responses against emerging virus variants.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology
7.
Front Immunol ; 14: 1123052, 2023.
Article in English | MEDLINE | ID: mdl-36911680

ABSTRACT

Introduction: Chronic inflammation caused by dietary obesity has been considered to induce lifestyle-related diseases and functional ingredients with anti-inflammatory effects are attracting attention. Although multiple studies on obesity had proved the anti-inflammatory effects of ingestion of lactic acid bacteria (LAB) and other functional ingredients on adipose tissue, the precise effects on the intestine, especially on the individual intestinal segments have not been made clear. In this study, we elucidated the mechanisms of Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) OLL2712 in suppressing obesity-induced inflammation using high fat diet (HFD)-fed mice obesity model. Methods: We orally administered heat-treated LAB to HFD-fed mice model, and investigated the inflammatory changes in adipose tissue and intestinal immune cells. We also analyzed gut microbiota, and evaluated the inflammation and permeability of the duodenum, jejunum, ileum and colon; four intestinal segments differing in gut bacteria composition and immune response. Results: After 3-week LAB administration, the gene expression levels of proinflammatory cytokines were downregulated in adipose tissue, colon, and Peyer's patches (PP)-derived F4/80+ cells. The LAB treatment alleviated obesity-related gut microbiota imbalance. L. plantarum OLL2712 treatment helps maintain intestinal barrier function, especially in the ileum, possibly by preventing ZO-1 and Occludin downregulation. Discussion: Our results suggest that the oral administration of the LAB strain regulated the gut microbiota, suppressed intestinal inflammation, and improved the gut barrier, which could inhibit the products of obesity-induced gut dysbiosis from translocating into the bloodstream and the adipose tissue, through which the LAB finally alleviated the inflammation caused by dietary obesity. Barrier improvement was observed, especially in the ileum, suggesting collaborative modulation of the intestinal immune responses by ingested LAB and microbiota.


Subject(s)
Gastrointestinal Microbiome , Lactobacillales , Animals , Mice , Obesity/microbiology , Inflammation , Ileum , Anti-Inflammatory Agents/pharmacology
8.
Int Immunol ; 35(5): 213-220, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36566501

ABSTRACT

Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , RNA, Messenger/genetics , mRNA Vaccines , Antibodies, Viral
9.
Hum Genomics ; 16(1): 37, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076307

ABSTRACT

INTRODUCTION: A major challenge to enabling precision health at a global scale is the bias between those who enroll in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial provider network, without the ability for the scientific community to either access or validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data sources and applies learnings to common chronic disease conditions including Type 2 diabetes (T2D) and hypertension. METHODS: We collected genotyped data from a novel DTC platform where participants upload their genotype data files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 6 months. Quality control, imputation, and genome-wide association studies were performed on this dataset, and polygenic risk scores were built in a case-control setting using the BASIL algorithm. RESULTS: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants showing identical effect direction to previously reported genome-significant findings in Europeans. Performance metric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger datasets including clinical biomarkers. DISCUSSION: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism for scaling precision health care delivery beyond the small number of countries who can afford to finance these efforts directly. CONCLUSIONS: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic landscape so that informed, timely clinical interventions can be incorporated.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Hypertension/genetics , Multifactorial Inheritance/genetics , Phenotype , Precision Medicine , Risk Factors
10.
iScience ; 25(9): 104959, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35992306

ABSTRACT

Determinants of memory T cell longevity following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain unknown. In addition, phenotypes associated with memory T cell longevity, antibody titers, and disease severity are incompletely understood. Here, we longitudinally analyzed SARS-CoV-2-specific T cell and antibody responses of a unique cohort with similar numbers of mild, moderate, and severe coronavirus disease 2019 cases. The half-lives of CD4+ and CD8+ T cells were longer than those of antibody titers and showed no clear correlation with disease severity. When CD4+ T cells were divided into Th1-, Th2-, Th17-, and Tfh-like subsets, the Th17-like subset showed a longer half-life than other subsets, indicating that Th17-like cells are most closely correlated with T cell longevity. In contrast, Th2- and Tfh-like T cells were more closely correlated with antibody titers than other subsets. These results suggest that distinct CD4+ T cell subsets are associated with longevity and antibody responses.

11.
Cell Rep Med ; 3(5): 100631, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35545084

ABSTRACT

Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
12.
Commun Biol ; 5(1): 519, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641589

ABSTRACT

Macrophages are classified into classically activated M1 macrophages and alternatively activated M2 macrophages, and the two phenotypes of macrophages are present during the development of various chronic diseases, including obesity-induced inflammation. In the present study, ß-elemene, which is contained in various plant substances, is predicted to treat high-fat diet (HFD)-induced macrophage dysfunction based on the Gene Expression Omnibus (GEO) database and experimental validation. ß-elemene impacts the imbalance of M1-M2 macrophages by regulating pro-inflammatory cytokines in mouse white adipose tissue both in vitro and in vivo. In addition, the RAW 264 cell line, which are macrophages from mouse ascites, is used to identify the effects of ß-elemene on inhibiting bacterial endotoxin lipopolysaccharide (LPS)-induced phosphorylation of mitogen-activated protein kinase (MAPK) pathways. These pathways both induce and are activated by pro-inflammatory cytokines, and they also participate in the process of obesity-induced inflammation. The results highlight that ß-elemene may represent a possible macrophage-mediated therapeutic medicine.


Subject(s)
Macrophages , p38 Mitogen-Activated Protein Kinases , Animals , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Mice , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Sesquiterpenes , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Sci Immunol ; 7(70): eabn8590, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35113654

ABSTRACT

Multiple SARS-CoV-2 variants have mutations in the spike receptor binding domain (RBD) with potential to evade neutralizing antibody. In particular, the Beta and Omicron variants escape from antibody neutralizing activity in those who received two doses of BNT162b2 mRNA vaccine. Nonetheless, boosting with a third vaccine dose or by breakthrough infection improves the overall breadth of the neutralizing antibodies, but the mechanism remains unclear. Here, we longitudinally profiled the cellular composition of RBD-binding memory B cell subsets and their antibody binding and neutralizing activity against SARS-CoV-2 variants after the second dose of mRNA vaccine. Two doses of the mRNA vaccine elicited plasma neutralizing antibodies with a limited activity against Beta and Omicron but induced an expanded antibody breadth overtime, up to 4.9 months after vaccination. In contrast, more than one-third of RBD-binding IgG+ memory B cells with a resting phenotype initially bound the Beta and Omicron variants and steadily increased the B cell receptor breadth overtime. As a result, a fraction of the resting memory B cell subset secreted Beta and Omicron-neutralizing antibody when stimulated in vitro. The neutralizing breadth of the resting memory B cell subset helps us understand the prominent recall of Omicron-neutralizing antibodies after an additional booster or breakthrough infection in fully vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Memory B Cells , Vaccines, Synthetic , mRNA Vaccines
15.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34246326

ABSTRACT

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , COVID-19/epidemiology , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2/genetics , Viral Load
16.
Biomedicines ; 9(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206511

ABSTRACT

As a kind of metabolically triggered inflammation, obesity influences the interplay between the central nervous system and the enteral environment. The present study showed that ß-elemene, which is contained in various plant substances, had effects on recovering the changes in metabolites occurring in high-fat diet (HFD)-induced obese C57BL/6 male mice brains, especially in the prefrontal cortex (PFC) and hippocampus (HIP). ß-elemene also partially reversed HFD-induced changes in the composition and contents of mouse gut bacteria. Furthermore, we evaluated the interaction between cerebral metabolites and intestinal microbiota via Pearson correlations. The prediction results suggested that Firmicutes were possibly controlled by neuron integrity, cerebral inflammation, and neurotransmitters, and Bacteroidetes in mouse intestines might be related to cerebral aerobic respiration and the glucose cycle. Such results also implied that Actinobacteria probably affected cerebral energy metabolism. These findings suggested that ß-elemene has regulatory effects on the imbalanced microbiota-gut-brain axis caused by obesity and, therefore, would contribute to the future study in on the interplay between cerebral metabolites from different brain regions and the intestinal microbiota of mice.

17.
Mucosal Immunol ; 14(6): 1335-1346, 2021 11.
Article in English | MEDLINE | ID: mdl-34326478

ABSTRACT

Intestinal inflammation can be accompanied by osteoporosis, but their relationship, mediated by immune responses, remains unclear. Here, we investigated a non-IgE-mediated food-allergic enteropathy model of ovalbumin (OVA) 23-3 mice expressing OVA-specific T-cell-receptor transgenes. Mesenteric lymph nodes (MLNs) and their pathogenic CD4+T cells were important to enteropathy occurrence and exacerbation when the mice were fed an egg-white (EW) diet. EW-fed OVA23-3 mice also developed bone loss and increased CD44hiCD62LloCD4+T cells in the MLNs and bone marrow (BM); these changes were attenuated by MLN, but not spleen, resection. We fed an EW diet to F1 cross offspring from OVA23-3 mice and a mouse line expressing the photoconvertible protein KikGR to track MLN CD4+T cells. Photoconverted MLN CD44hiCD62LloCD4+T cells migrated predominantly to the BM; pit formation assay proved their ability to promote bone damage via osteoclasts. Significantly greater expression of IL-4 mRNA in MLN CD44hiCD62LloCD4+T cells and bone was observed in EW-fed OVA23-3 mice. Anti-IL-4 monoclonal antibody injection canceled bone loss in the primary inflammation phase in EW-fed mice, but less so in the chronic phase. This novel report shows the specific inflammatory relationship, via Th2-dominant-OVA-specific T cells and IL-4 production, between MLNs and bone, a distant organ, in food-allergic enteropathy.


Subject(s)
Bone Resorption/etiology , CD4-Positive T-Lymphocytes/physiology , Food Hypersensitivity/complications , Food Hypersensitivity/immunology , Interleukin-4/genetics , Intestinal Diseases/immunology , Lymph Nodes/immunology , Memory T Cells/physiology , Animals , Biomarkers , Bone Resorption/diagnostic imaging , Bone Resorption/metabolism , Bone Resorption/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Food Hypersensitivity/metabolism , Immunophenotyping , Interleukin-4/metabolism , Intestinal Diseases/complications , Intestinal Diseases/metabolism , Lymph Nodes/metabolism , Mesentery , Mice , Models, Biological
18.
Jpn J Radiol ; 39(11): 1127-1132, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34057688

ABSTRACT

PURPOSE: This study aimed to create an animal model of type Ia endoleak that creates persistent problems after thoracic endovascular aortic repair. MATERIALS AND METHODS: In six swine, thoracic aortic aneurysms were created using the harvested jugular vein. We created a type Ia endoleak using a composite stent-graft comprising the first stent-graft (reverse-tapered: thicker part, 16 mm; thinner part, 10 mm) and the second stent-graft (tapered: thicker part, 18-20 mm; thinner part, 16 mm). This double-component stent-graft was deployed in the abdominal aorta and then moved upward to the proximal entry site of the thoracic aneurysm using the inflated balloon for precise positioning. After the surgical procedure and on postoperative day 8, aortography was performed to detect residual endoleak, and then the swine were euthanized. RESULTS: A stable aneurysm (mean size of all aneurysms, 16.8 ± 1.72 mm × 11.8 ± 2.32 mm) and type Ia endoleak were successfully observed in all swine. A single stent-graft was sufficient in one of the six swine. CONCLUSION: A novel technique to create a type Ia endoleak model can be successfully developed in swine.


Subject(s)
Blood Vessel Prosthesis Implantation , Endovascular Procedures , Animals , Aorta, Thoracic/surgery , Aortography , Blood Vessel Prosthesis , Endoleak/diagnostic imaging , Endoleak/surgery , Reoperation , Stents , Swine , Time Factors , Treatment Outcome
19.
HLA ; 98(1): 37-42, 2021 07.
Article in English | MEDLINE | ID: mdl-33734601

ABSTRACT

HLA-A, -C, -B, and -DRB1 genotypes were analyzed in 178 Japanese COVID-19 patients to investigate the association of HLA with severe COVID-19. Analysis of 32 common HLA alleles at four loci revealed a significant association between HLA-DRB1*09:01 and severe COVID-19 (odds ratio [OR], 3.62; 95% CI, 1.57-8.35; p = 0.00251 [permutation p value = 0.0418]) when age, sex, and other common HLA alleles at the DRB1 locus were adjusted. The DRB1*09:01 allele was more significantly associated with risk for severe COVID-19 compared to preexisting medical conditions such as hypertension, diabetes, and cardiovascular diseases. These results indicate a potential role for HLA in predisposition to severe COVID-19.


Subject(s)
COVID-19 , HLA-DRB1 Chains , Alleles , COVID-19/diagnosis , COVID-19/genetics , Gene Frequency , Genetic Predisposition to Disease , Genotype , HLA-DRB1 Chains/genetics , Humans
20.
Sci Rep ; 11(1): 3830, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589686

ABSTRACT

Reflected wave increases after endovascular aortic repair (EVAR) in patients with aortic aneurysm. This affects the left ventricular (LV) diastolic function and leads to a poor prognosis. This study aimed to evaluate the relationship between increased reflected wave amplitude and aortic diameter after EVAR. EVAR was performed in seven healthy goats. We assessed wave intensity (WI), aortic diameter, and stiffness parameter ß. Moreover, we evaluated the relationship between negative reflected wave (NW, reflected waves toward the heart from the periphery by WI) and other parameters after EVAR. Results showed an increase in stiffness parameter ß (3.5 ± 0.3 vs 15.9 ± 4.7, p = 0.018) and a decrease in the change of aortic diameter (6.9 ± 0.7 vs 2.7 ± 0.4%, p = 0.018) after EVAR. The NW was significantly amplified after EVAR from baseline (-589.8 ± 143.4 to - 1192.3 ± 303.7 mmHg-m/sec3, p = 0.043). The NW showed a significant correlation with maximum aortic diameter (R = 0.707, p = 0.038) and minimum aortic diameter (R = 0.724, p = 0.033). The reflected wave was enhanced after EVAR and was correlated to the aortic diameter at the stent-graft site. It is important to consider that patients with smaller aortic diameters in landing zone who undergo EVAR may develop LV dysfunction.


Subject(s)
Aorta/diagnostic imaging , Aorta/pathology , Aortic Aneurysm/diagnosis , Diagnostic Imaging , Animals , Aorta/physiopathology , Aorta/surgery , Aortic Aneurysm/surgery , Biomarkers , Diagnostic Imaging/methods , Disease Models, Animal , Electrocardiography , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Female , Goats , Heart Function Tests , Hemodynamics , Postoperative Period , Stents , Ultrasonography/methods , Vascular Stiffness
SELECTION OF CITATIONS
SEARCH DETAIL