Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(6): e16970, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484286

ABSTRACT

Many female mammals have recurring cycles of ovulation and sexual behaviors that are regulated by reproductive hormones and confer reproductive success. In addition to sexual behaviors, circadian behavioral rhythms of locomotor activity also fluctuate across the estrous cycle in rodents. Moreover, there is a bidirectional relationship between circadian rhythms and estrous cyclicity since mice with disrupted circadian rhythms also have compromised estrous cycles resulting in fewer pregnancies. In the present study, we assessed whether extending day length, which alters circadian rhythms, normalizes estrous cyclicity in mice. We found that Period (Per) 1/2/3 triple knockout (KO) mice, that have disabled canonical molecular circadian clocks, have markedly disrupted estrous cycles. Surprisingly, extending the day length by only 2 h per day restored regular 4- or 5-day estrous cycles to Per1/2/3 KO mice. Longer days also induced consistent 4-day, rather than 5-day, estrous cycles in wild-type C57BL/6J mice. These data demonstrate that extending daytime light exposure could be used for enhancing reproductive success.

2.
Neurosci Lett ; 772: 136415, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34954114

ABSTRACT

The circadian rhythms of physiology and behavior are based on molecular systems at the cellular level, which are regulated by clock genes, including cryptochrome genes, Cry1 and Cry2. In mammals, the circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus maintains the circadian rhythms throughout the body. Cry1 and Cry2 play distinct roles in regulating the circadian rhythm. However, the different effects of manipulating clock genes in heterozygous and homozygous alleles, Cry1 and Cry2, remain unclear. Therefore, this study aimed to understand the haplosufficiency of cryptochrome genes in regulating the circadian system. We examined wheel-running activity rhythms and PER2::LUC expression rhythms in SCN slices and pituitary explants in mice. Compared with wild-type mice, Cry1-/- or Cry2-/- mice had shortened or lengthened periods in free-running behavioral rhythms and PER2::LUC expression in the SCN and pituitary gland. Cry1+/- mice had similar circadian rhythms as wild-type mice, although Cry2+/- mice had lengthened periods. The amplitude of PER2::LUC expression exhibited faster damping in Cry1-/- mice. Therefore, Cry1 deficiency affects the circadian period length and stability of the circadian system. A single allele of Cry2 deficiency affects the circadian rhythm, whereas that of Cry1 deficit is compensated.


Subject(s)
Cryptochromes/genetics , Animals , Brain/metabolism , Brain/physiology , Circadian Rhythm , Cryptochromes/deficiency , Haploinsufficiency , Heterozygote , Homozygote , Male , Mice , Mice, Inbred C57BL , Running
3.
J Physiol Sci ; 68(4): 377-385, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28484984

ABSTRACT

Salivary secretion displays day-night variations that are controlled by the circadian clock. The central clock in the suprachiasmatic nucleus (SCN) regulates daily physiological rhythms by prompting peripheral oscillators to adjust to changing environments. Aquaporin 5 (Aqp5) is known to play a key role in salivary secretion, but the association between Aqp5 and the circadian rhythm is poorly understood. The aim of our study was to evaluate whether Aqp5 expression in submandibular glands (SMGs) is driven by the central clock in the SCN or by autonomous oscillations. We observed circadian oscillations in the activity of period circadian protein homolog 2 and luciferase fusion protein (PER2::LUC) in cultured SMGs with periodicity depending on core clock genes. A daily rhythm was detected in the expression profiles of Aqp5 in SMGs in vivo. In cultured SMGs ex vivo, clock genes showed distinct circadian rhythms, whereas Aqp5 expression did not. These data indicate that daily Aqp5 expression in the mouse SMG is driven by the central clock in the SCN.


Subject(s)
Aquaporin 5/metabolism , Circadian Clocks/physiology , Circadian Rhythm/physiology , Submandibular Gland/metabolism , Animals , Aquaporin 5/genetics , Male , Mice , Mice, Transgenic , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/metabolism
4.
J Physiol Sci ; 66(5): 367-74, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26915078

ABSTRACT

Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.


Subject(s)
Aging/physiology , Biological Clocks/physiology , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Animals , Humans , Motor Activity/physiology , Photoperiod
5.
Neurosci Lett ; 610: 123-8, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26542738

ABSTRACT

The circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for controlling behavioral activity rhythms, such as a free running rhythm in constant darkness. Rodents have several circadian oscillators in other brain regions including the arcuate nucleus (ARC). In specific conditions such as food anticipatory activity rhythms in the context of timed restricted feeding, an alternative circadian pace-making system has been assumed by means of circadian oscillators like the SCN. Despite extensive lesion studies, the anatomic locations of extra-SCN circadian pacemakers responsible for regulating behavioral rhythms have not been found. In the present study, we investigated circadian rhythms in the SCN and extra-SCN region of the arcuate nucleus (ARC) by analyzing PER2::LUCIFERASE expression in specific regions from wild-type C57BL/6, Cry1(-/-), and Cry2(-/-) mice. Compared to wild-type animals, we observed period shortening in both the SCN and ARC of Cry1(-/-) mice and period lengthening in Cry2(-/-) mice. Interestingly, the periods in the ARC of both genotypes were identical to those in the SCN. Moreover, the amplitudes of PER2::LUC rhythms in the ARC of all animals were decreased compared to those in the SCN. These data suggest that the ARC is a candidate circadian pacemaker outside the SCN.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Circadian Rhythm , Cryptochromes/metabolism , Animals , Cryptochromes/genetics , Genotype , Male , Mice, Inbred C57BL , Motor Activity , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/physiology
6.
Am J Physiol Regul Integr Comp Physiol ; 309(9): R1112-21, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26333783

ABSTRACT

Effects of daily physical exercise in the morning or in the evening were examined on circadian rhythms in plasma melatonin and core body temperature of healthy young males who stayed in an experimental facility for 7 days under dim light conditions (<10 lux). Sleep polysomnogram (PSG) and heart rate variability (HRV) were also measured. Subjects performed 2-h intermittent physical exercise with a bicycle ergometer at ZT3 or at ZT10 for four consecutive days, where zeitgeber time 0 (ZT0) was the time of wake-up. The rising phase of plasma melatonin rhythm was delayed by 1.1 h without exercise. Phase-delay shifts of a similar extent were detected by morning and evening exercise. But the falling phase shifted only after evening exercise by 1.0 h. The sleep PSG did not change after morning exercise, while Stage 1+2 sleep significantly decreased by 13.0% without exercise, and RE sleep decreased by 10.5% after evening exercise. The nocturnal decline of rectal temperature was attenuated by evening exercise, but not by morning exercise. HRV during sleep changed differentially. Very low frequency (VLF) waves increased without exercise. VLF, low frequency (LF), and high frequency (HF) waves increased after morning exercise, whereas HR increased after evening exercise. Morning exercise eventually enhanced the parasympathetic activity, as indicated by HRV, while evening exercise activated the sympathetic activity, as indicated by increase in heart rate in the following nocturnal sleep. These findings indicated differential effects of morning and evening exercise on the circadian melatonin rhythm, PSG, and HRV.


Subject(s)
Autonomic Nervous System/physiology , Circadian Rhythm/physiology , Exercise/physiology , Homeostasis/physiology , Sleep/physiology , Adaptation, Physiological/physiology , Body Temperature Regulation/physiology , Heart Rate/physiology , Humans , Male , Melatonin/blood , Polysomnography , Young Adult
7.
Cell Rep ; 12(9): 1407-13, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26299967

ABSTRACT

Female reproductive function changes during aging with the estrous cycle becoming more irregular during the transition to menopause. We found that intermittent shifts of the light-dark cycle disrupted regularity of estrous cycles in middle-aged female mice, whose estrous cycles were regular under unperturbed 24-hr light-dark cycles. Although female mice deficient in Cry1 or Cry2, the core components of the molecular circadian clock, exhibited regular estrous cycles during youth, they showed accelerated senescence characterized by irregular and unstable estrous cycles and resultant infertility in middle age. Notably, tuning the period length of the environmental light-dark cycles closely to the endogenous one inherent in the Cry-deficient females restored the regularity of the estrous cycles and, consequently, improved fertility in middle age. These results suggest that reproductive potential can be strongly influenced by age-related changes in the circadian system and normal reproductive functioning can be rescued by the manipulation of environmental timing signals.


Subject(s)
Aging/physiology , Circadian Rhythm , Estrous Cycle/physiology , Fertility/physiology , Photoperiod , Animals , Cryptochromes/genetics , Estrous Cycle/genetics , Female , Fertility/genetics , Mice , Mice, Inbred C57BL
8.
PLoS One ; 8(5): e64333, 2013.
Article in English | MEDLINE | ID: mdl-23717599

ABSTRACT

The master pacemaker in the suprachiasmatic nucleus (SCN) controls daily rhythms of behavior in mammals. C57BL/6J mice lacking Period1 (Per1⁻/⁻) are an anomaly because their SCN molecular rhythm is weak or absent in vitro even though their locomotor activity rhythm is robust. To resolve the contradiction between the in vitro and in vivo circadian phenotypes of Per1⁻/⁻ mice, we measured the multi-unit activity (MUA) rhythm of the SCN neuronal population in freely-behaving mice. We found that in vivo Per1⁻/⁻ SCN have high-amplitude MUA rhythms, demonstrating that the ensemble of neurons is driving robust locomotor activity in Per1⁻/⁻ mice. Since the Per1⁻/⁻ SCN electrical activity rhythm is indistinguishable from wild-types, in vivo physiological factors or coupling of the SCN to a known or unidentified circadian clock(s) may compensate for weak endogenous molecular rhythms in Per1⁻/⁻ SCN. Consistent with the behavioral light responsiveness of Per1⁻/⁻ mice, in vivo MUA rhythms in Per1⁻/⁻ SCN exhibited large phase shifts in response to light. Since the acute response of the MUA rhythm to light in Per1⁻/⁻ SCN is equivalent to wild-types, an unknown mechanism mediates enhanced light responsiveness of Per1⁻/⁻ mice. Thus, Per1⁻/⁻ mice are a unique model for investigating the component(s) of the in vivo environment that confers robust rhythmicity to the SCN as well as a novel mechanism of enhanced light responsiveness.


Subject(s)
Circadian Rhythm , Period Circadian Proteins/physiology , Suprachiasmatic Nucleus/physiology , Animals , Light , Locomotion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Period Circadian Proteins/genetics
9.
PLoS One ; 7(11): e48892, 2012.
Article in English | MEDLINE | ID: mdl-23145013

ABSTRACT

In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.


Subject(s)
Circadian Rhythm , Feeding Behavior/psychology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/physiology , Animals , Anticipation, Psychological , Behavior, Animal , Cryptochromes/genetics , Cryptochromes/physiology , Mice , Mice, Inbred C57BL , Suprachiasmatic Nucleus/pathology , Suprachiasmatic Nucleus/physiopathology
10.
Brain Res ; 1389: 83-92, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21382356

ABSTRACT

Previous neuroimaging studies that examined cerebral blood flow during rapid eye movement (REM) sleep have reported inconsistent findings regarding the activity of the dorsolateral prefrontal cortex (DLPFC). Although most previous positron emission tomography (PET) studies failed to detect DLPFC activation during REM sleep, several studies have observed DLPFC activation, possibly reflecting transient prefrontal activities related to REM. More recently, an event-related functional magnetic resonance imaging (fMRI) study observed REM-locked activation of the DLPFC during REM sleep. The present study investigated hemodynamic changes of the DLPFC throughout the REM sleep period in 25 subjects using near-infrared spectroscopy. Continuous monitoring of changes in the hemoglobin (Hb) concentration and tissue oxygenation index (TOI, proportion of oxygenated-Hb to total-Hb) in the bilateral DLPFC was conducted every 0.5s, simultaneously with polysomnographic recordings. Eight of the 25 subjects showed REM sleep, and all indicated a clear increase in both the oxygenated-Hb concentration and TOI from baseline at the occurrence of first REM, relative to prior stage 2 sleep. The results indicate that the appearance of the first REM that occurred just after onset of the REM sleep closely coincides with the activation of the DLPFC, which could play a role in cognitive activities during REM sleep in humans.


Subject(s)
Hemodynamics/physiology , Prefrontal Cortex/blood supply , Prefrontal Cortex/physiology , Sleep, REM/physiology , Humans , Polysomnography , Spectroscopy, Near-Infrared
11.
Am J Physiol Regul Integr Comp Physiol ; 291(6): R1799-807, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16840653

ABSTRACT

Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed. The peak level of melatonin rise was not affected. As a result, the width of nocturnal melatonin rise was significantly shortened. In the second week, under bright light conditions ( approximately 5,000 lx), the phases of nocturnal melatonin rise were not changed further, but the peak level was significantly increased. Core body temperature at the initial sleep phase was progressively elevated during the course of dim light exposure and reached the maximum level at the first night of bright light conditions. Subjective sleepiness gradually declined in the course of dim light exposure and reached the minimum level at the first day of bright light. These findings indicate that repeated exposures to daytime bright light are effective in controlling the circadian phase and increasing the peak level of nocturnal melatonin rise in plasma and suggest a close correlation between phase-delay shifts of the onset of nocturnal melatonin rise or body temperature rhythm and daytime sleepiness.


Subject(s)
Biological Clocks/physiology , Body Temperature/physiology , Circadian Rhythm/physiology , Light , Sleep/physiology , Adult , Biological Clocks/radiation effects , Body Temperature/radiation effects , Circadian Rhythm/radiation effects , Environmental Exposure , Humans , Male , Metabolic Clearance Rate/radiation effects , Sleep/radiation effects
12.
J Neurosci ; 25(23): 5481-7, 2005 Jun 08.
Article in English | MEDLINE | ID: mdl-15944376

ABSTRACT

The suprachiasmatic nuclei (SCNs) of the hypothalamus contain a circadian clock that exerts profound control over rhythmic physiology and behavior. The clock consists of multiple autonomous cellular pacemakers distributed throughout the rat SCN. In response to a shift in the light schedule, the SCN rapidly changes phase to achieve the appropriate phase relationship with the shifted light schedule. Through use of a transgenic rat in which rhythmicity in transcription of the Period 1 gene was measured with a luciferase reporter (Per1-luc), we have been successful in tracking the time course of molecular rhythm phase readjustments in different regions of the SCN that occur in response to a shift in the light schedule. We find that different regions of the SCN phase adjust at different rates, leading to transient internal desynchrony in Per1-luc expression among SCN regions. This desynchrony among regions is most pronounced and prolonged when the light schedule is advanced compared with light schedule delays. A similar asymmetry in the speed of phase resetting is observed with locomotor behavior, suggesting that phase shifting kinetics within the SCN may underlay the differences observed in behavioral resetting to advances or delays in the light schedule.


Subject(s)
Eye Proteins/biosynthesis , Periodicity , Photoperiod , Suprachiasmatic Nucleus/metabolism , Animals , Animals, Genetically Modified , Eye Proteins/genetics , Genes, Reporter , In Vitro Techniques , Luciferases/genetics , Male , Period Circadian Proteins , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...