Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 145(40): 22115-22121, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37756122

ABSTRACT

π-Stacking, which is a ubiquitous structural motif in assemblies of aromatic compounds, is well-known to provide a transport pathway for charge carriers and excitons, while its contribution to thermal transport is still unclear. Herein, based on detailed experimental observations of the thermal diffusivity, thermal conductivity, and specific heat of a single-crystalline triphenylene featuring a one-dimensionally π-stacked structure, we describe the nature of thermal transport through the π-stacked columns. We reveal that acoustic phonons are responsible for thermal transport through the π-stacked columns, which exhibit crystal-like behavior. Importantly, the thermal energy stored as intramolecular vibrations can also be transported by coupling to the acoustic phonons. In contrast, in the direction perpendicular to the π-stacked columns, an amorphous-like thermal transport behavior dominates. The present finding offers deep insight into nanoscale thermal transport in organic materials, where the constituent molecules exist as discrete entities linked together by weak intermolecular interactions.

2.
Chem Commun (Camb) ; 55(23): 3327-3330, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30741309

ABSTRACT

The single-component molecular conductor [Pt(dmdt)2] is a sought-after ambient-pressure molecular Dirac electron system, which exhibits a high temperature-insensitive conductivity and temperature-dependent magnetic susceptibility nearly vanishing below 120 K. First-principles DFT calculations reveal that Dirac cones emerge along the a* direction, and form Dirac nodal lines.

3.
Phys Rev Lett ; 116(22): 226401, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27314731

ABSTRACT

Through resistivity measurements of an organic crystal hosting massless Dirac fermions with a charge-ordering instability, we reveal the effect of interactions among massless Dirac fermions on the charge transport. A low-temperature resistivity upturn appears robustly irrespective of the pressure and is enhanced while approaching the critical pressure of charge ordering, indicating that the insulating behavior originates from short-range Coulomb interactions. The observation of an apparently vanishing gap in the charge-ordered phase accords with the theoretical prediction of nontopological edge states.

SELECTION OF CITATIONS
SEARCH DETAIL