Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 13(10): 1591-1597, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36262388

ABSTRACT

Fragment-based ligand discovery was successfully applied to histone deacetylase HDAC2. In addition to the anticipated hydroxamic acid- and benzamide-based fragment screening hits, a low affinity (∼1 mM) α-amino-amide zinc binding fragment was identified, as well as fragments binding to other regions of the catalytic site. This alternative zinc-binding fragment was further optimized, guided by the structural information from protein-ligand complex X-ray structures, into a sub-µM, brain penetrant, HDAC2 inhibitor (17) capable of modulating histone acetylation levels in vivo.

2.
J Med Chem ; 64(7): 4071-4088, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33761253

ABSTRACT

Inhibition of murine double minute 2 (MDM2)-p53 protein-protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.


Subject(s)
Antineoplastic Agents/pharmacology , Isoindoles/pharmacology , Osteosarcoma/drug therapy , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Stability , Female , Humans , Isoindoles/chemical synthesis , Isoindoles/metabolism , Macaca fascicularis , Male , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
J Med Chem ; 60(11): 4611-4625, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28492317

ABSTRACT

XIAP and cIAP1 are members of the inhibitor of apoptosis protein (IAP) family and are key regulators of anti-apoptotic and pro-survival signaling pathways. Overexpression of IAPs occurs in various cancers and has been associated with tumor progression and resistance to treatment. Structure-based drug design (SBDD) guided by structural information from X-ray crystallography, computational studies, and NMR solution conformational analysis was successfully applied to a fragment-derived lead resulting in AT-IAP, a potent, orally bioavailable, dual antagonist of XIAP and cIAP1 and a structurally novel chemical probe for IAP biology.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Piperazines/chemistry , Piperazines/pharmacology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Peptidomimetics , Small Molecule Libraries , Structure-Activity Relationship
4.
ACS Chem Biol ; 11(11): 3093-3105, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27571355

ABSTRACT

The members of the NSD subfamily of lysine methyl transferases are compelling oncology targets due to the recent characterization of gain-of-function mutations and translocations in several hematological cancers. To date, these proteins have proven intractable to small molecule inhibition. Here, we present initial efforts to identify inhibitors of MMSET (aka NSD2 or WHSC1) using solution phase and crystal structural methods. On the basis of 2D NMR experiments comparing NSD1 and MMSET structural mobility, we designed an MMSET construct with five point mutations in the N-terminal helix of its SET domain for crystallization experiments and elucidated the structure of the mutant MMSET SET domain at 2.1 Å resolution. Both NSD1 and MMSET crystal systems proved resistant to soaking or cocrystallography with inhibitors. However, use of the close homologue SETD2 as a structural surrogate supported the design and characterization of N-alkyl sinefungin derivatives, which showed low micromolar inhibition against both SETD2 and MMSET.


Subject(s)
Adenosine/analogs & derivatives , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Oncogenes , Repressor Proteins/antagonists & inhibitors , Adenosine/chemistry , Adenosine/pharmacology , Binding Sites , Calorimetry , Chromatography, Liquid , Crystallography, X-Ray , Drug Design , Histone-Lysine N-Methyltransferase/genetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Protein Conformation , Repressor Proteins/genetics
5.
ACS Med Chem Lett ; 6(7): 798-803, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26191369

ABSTRACT

The DDR1 and DDR2 receptor tyrosine kinases are activated by extracellular collagen and have been implicated in a number of human diseases including cancer. We performed a fragment-based screen against DDR1 and identified fragments that bound either at the hinge or in the back pocket associated with the DFG-out conformation of the kinase. Modeling based on crystal structures of potent kinase inhibitors facilitated the "back-to-front" design of potent DDR1/2 inhibitors that incorporated one of the DFG-out fragments. Further optimization led to low nanomolar, orally bioavailable inhibitors that were selective for DDR1 and DDR2. The inhibitors were shown to potently inhibit DDR2 activity in cells but in contrast to unselective inhibitors such as dasatinib, they did not inhibit proliferation of mutant DDR2 lung SCC cell lines.

6.
J Med Chem ; 58(16): 6574-88, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26218264

ABSTRACT

Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/drug effects , Peptide Fragments/pharmacology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Computational Biology , Drug Design , Drug Discovery , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacokinetics , Piperazines/chemical synthesis , Piperazines/pharmacology , Xenograft Model Antitumor Assays
8.
Inorg Chem ; 49(8): 3789-800, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20297799

ABSTRACT

In an effort to improve upon the recently reported cyclam based zinc sensor 1, the "click"-generated 1,8-disubstituted analogue 2 has been prepared. The ligand shows a 2-fold increase in its fluorescence emission compared to 1 exclusively in the presence of Zn(II) that is typical of switch-on PET fluorescent sensors. Single crystal X-ray diffraction of complexes of model ligand 10 reveals that the configuration adopted by the macrocyclic framework is extremely sensitive to the metal ion to which it coordinates. For Zn(II), Mg(II), and Li(I) the metal ions adopt an octahedral geometry with a trans III configuration of the cyclam ring. In contrast for Ni(II) the ligand adopts the rare cis V configuration, while for Cu(II) a clear preference for five-coordinate geometry is displayed with a trans I configuration of the macrocyclic ring being observed in two essentially isostructural compounds prepared via different routes. The ligand displays an increased selectivity for Zn(II) compared to 1 in the majority of cases with excellent selectivity upheld over Na(I), Mg(II), Ca(II), Mn(II), Ni(II), Co(II), and Fe(III). In contrast for Cu(II) and Hg(II) little improvement was observed for 2 compared to 1 and for Cd(II) the selectivity of the new ligand was inferior. In the light of these findings and the slower response times for ligand 2, our original "click"-generated cyclam sensor system 1 was employed in a proof of concept study to prepare a heterogeneous sol-gel based material which retains its PET response to Zn(II). The versatile nature of the sol-gel process importantly allows the simple preparation of a variety of nanostructured materials displaying high surface area-volume ratio using fabrication methods such as soft lithography, electrospinning, and nanopipetting.


Subject(s)
Fluorescent Dyes/chemistry , Lactams, Macrocyclic/chemistry , Nanostructures/chemistry , Zinc/chemistry , Cations, Divalent/analysis , Cations, Divalent/chemistry , Crystallography, X-Ray , Lactams, Macrocyclic/chemical synthesis , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Models, Molecular , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared , Zinc/analysis
10.
Chemistry ; 15(15): 3720-8, 2009.
Article in English | MEDLINE | ID: mdl-19222074

ABSTRACT

Chemical sensing is a mature field, and many effective sensors for small anions and cations have been devised. Metal complexes have been used widely for this purpose, but there are fewer reports of their use in the detection of organic and biological analytes. To date metal complexes have been used in sensing via the direct displacement of a pre-existing ligand by an analyte, or by an adventitious complementarity between the complex and analyte. These strategies do not permit a general approach to the sensing of biological molecules with metal complexes because of the demands to engineer molecular recognition into the complex architecture. We describe a fundamentally new approach to this field-the "allosteric scorpionate" metal complex. The binding partner of a biological analyte is attached to a scorpionate ligand on a metal complex, remote from the metal centre. Binding of the analyte causes a change in the primary coordination sphere at the metal, thereby revealing the presence of the biological molecule. We show that azamacrocyclic complexes with a triazole scorpion ligand may be easily assembled with the [3+2] Huisgens 'click' cycloaddition. We demonstrate the synthesis of a biotin-functionalised cyclam derivative using this methodology. This, and our previously communicated zinc sensor, are to the best of our knowledge the first examples of a triazole being employed as a scorpion ligand on an azamacrocycle. Coordination by the triazole to the metal is perturbed by the binding of avidin to the pendant ligand. This event can be sensitively detected with EPR spectroscopy, and the details of the coordination change probed with ENDOR spectroscopy, confirming the loss of the axial triazole nitrogen donor upon binding to avidin. This represents the first metal complex where remote, 'allosteric' coordination of an analyte has been shown to cause a change in the primary coordination sphere of the metal. Since the synthesis is modular and straightforward, other biological ligands may easily be introduced, and the associated binding events may be probed.


Subject(s)
Biological Assay/methods , Electron Spin Resonance Spectroscopy/methods , Metals/chemistry , Allosteric Regulation , Biotin/chemistry , Crystallography, X-Ray , Heterocyclic Compounds/chemistry , Models, Molecular , Molecular Structure
11.
Inorg Chem ; 48(1): 319-24, 2009 Jan 05.
Article in English | MEDLINE | ID: mdl-19053845

ABSTRACT

A cyclam-based macrocyclic sensor has been prepared using synthetically simple "click" chemistry to link a fluorophore to the macrocyclic receptor. This sensor shows high selectivity for Zn(II) over a range of other metals, providing a significant enhancement of fluorescence intensity over a wide pH range. As such, this is the first cyclam-based sensor demonstrated to be selective for Zn(II) and is the first example of a triazole being used as a coordinating ligand on an azamacrocycle. The sensor can access biologically available zinc in mammalian cells, sensing the Zn(II) flux that exists during apoptotic cell death.


Subject(s)
Fluorescent Dyes/chemistry , Heterocyclic Compounds/chemistry , Zinc/analysis , Animals , Binding, Competitive , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Cell Line , Electron Transport , Fluorescence , Fluorescent Dyes/chemical synthesis , Light , Mice , Triazoles/chemistry , Zinc/chemistry , Zinc/metabolism
12.
J Org Chem ; 72(22): 8280-9, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17902693

ABSTRACT

The biotin-(strept)avidin interaction remains a gold standard of model biological recognition events. The biotinylation of azamacrocycles permits the investigation of signal transduction between this recognition event and the metal center of an azamacrocycle complex, of wide potential interest in biosensing. There are no generally applicable procedures in the literature for such functionalizations. We report here a comprehensive investigation into the attachment of biotin to TACN, cyclen, and cyclam. Effective methods have been found for each ring. The efficacy of the functionalization is critically dependent on the nature of the azamacrocycle.


Subject(s)
Aza Compounds/chemical synthesis , Biotin/chemistry , Macrocyclic Compounds/chemical synthesis , Alkylation , Aza Compounds/chemistry , Biotinylation , Cyclams , Heterocyclic Compounds/chemistry , Macrocyclic Compounds/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...