Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Virology ; 591: 109985, 2024 03.
Article in English | MEDLINE | ID: mdl-38227992

ABSTRACT

Evidence for a stable interaction between the respiratory syncytial virus (RSV) F and G proteins on the surface of virus filaments was provided using antibody immunoprecipitation studies on purified RSV particles, and by the in situ analysis on the surface of RSV-infected cells using the proximity ligation assay. Imaging of the F and G protein distribution on virus filaments suggested that this protein complex was localised at the distal ends of the virus filaments, and suggested that this protein complex played a direct role in mediating efficient localised cell-to-cell virus transmission. G protein expression was required for efficient localised cell-to-cell transmission of RSV in cell monolayers which provided evidence that this protein complex mediates efficient multiple cycle infection. Collectively, these data provide evidence that F and G proteins form a complex on the surface of RSV particles, and that a role for this protein complex in promoting virus transmission is suggested.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Viral Fusion Proteins/genetics , Cytoskeleton , Protein Processing, Post-Translational , GTP-Binding Proteins/metabolism , Antibodies, Viral
2.
Subcell Biochem ; 106: 227-249, 2023.
Article in English | MEDLINE | ID: mdl-38159230

ABSTRACT

During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.


Subject(s)
Respiratory Syncytial Virus, Human , Virus Diseases , Humans , Virus Assembly/physiology , Respiratory Syncytial Virus, Human/physiology , Cell Membrane/metabolism , Virus Diseases/metabolism , Lipids
4.
Virology ; 580: 28-40, 2023 03.
Article in English | MEDLINE | ID: mdl-36746062

ABSTRACT

The association of the SH protein with respiratory syncytial virus (RSV) particles was examined in HEp2 cells and human ciliated nasal epithelial cells. Imaging of infected cells demonstrated the presence of the SH protein in virus filaments, and analysis of purified RSV particles revealed a SH protein species whose size was consistent with the glycosylated SH protein. Although the SH protein was detected in virus filaments it was not required for virus filament formation. Analysis of RSV-infected ciliated cells also revealed that the SH protein was trafficked into the cilia, and this correlated with reduced cilia density on these cells. Reduced cilia loss was not observed on ciliated cells infected with a RSV isolate that failed to express the SH protein. These data provide direct evidence that the SH protein is trafficked into virus particles, and suggests that the SH protein may also promote cilia dysfunction on nasal epithelial cells.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus, Human/physiology , Epithelial Cells , Cytoskeleton , Virion
5.
J Virol ; 96(13): e0045522, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35727030

ABSTRACT

A human monoclonal antibody panel (PD4, PD5, PD7, SC23, and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2-infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 spike (S) protein, only PD5, PD7, and SC23 were able to bind to the receptor binding domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localized within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD-binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognized the uncleaved S protein, indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining were demonstrated for each isolate, SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection. IMPORTANCE The SARS-CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS-CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection, and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore, an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS- CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID-19 patients to monitor the RBD in cells infected with SARS-CoV-2 clinical isolates. These immunological reagents specifically recognize the correctly folded RBD and were used to monitor the appearance of the RBD in SARS-CoV-2-infected cells and identified the site where the RBD first appears.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , Humans , Protein Binding , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemical synthesis , Spike Glycoprotein, Coronavirus/metabolism
6.
Singapore Med J ; 63(2): 61-67, 2022 02.
Article in English | MEDLINE | ID: mdl-32729311

ABSTRACT

The complete picture regarding transmission modes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. This review summarises the available evidence on its transmission modes, our preliminary research findings and implications for infection control policy, and outlines future research directions. Environmental contamination has been reported in hospital settings occupied by infected patients, and is higher in the first week of illness. Transmission via environmental surfaces or fomites is likely, but decontamination protocols are effective in minimising this risk. The extent of airborne transmission is also unclear. While several studies have detected SARS-CoV-2 ribonucleic acid in air samples, none has isolated viable virus in culture. Transmission likely lies on a spectrum between droplet and airborne transmission, depending on the patient, disease and environmental factors. Singapore's current personal protective equipment and isolation protocols are sufficient to manage this risk.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Infection Control/methods , Personal Protective Equipment
7.
Int J Bioprint ; 7(2): 332, 2021.
Article in English | MEDLINE | ID: mdl-33997432

ABSTRACT

The global prevalence of respiratory diseases caused by infectious pathogens has resulted in an increased demand for realistic in-vitro alveolar lung models to serve as suitable disease models. This demand has resulted in the fabrication of numerous two-dimensional (2D) and three-dimensional (3D) in-vitro alveolar lung models. The ability to fabricate these 3D in-vitro alveolar lung models in an automated manner with high repeatability and reliability is important for potential scalable production. In this study, we reported the fabrication of human triple-layered alveolar lung models comprising of human lung epithelial cells, human endothelial cells, and human lung fibroblasts using the drop-on-demand (DOD) 3D bioprinting technique. The polyvinylpyrrolidone-based bio-inks and the use of a 300 mm nozzle diameter improved the repeatability of the bioprinting process by achieving consistent cell output over time using different human alveolar lung cells. The 3D bioprinted human triple-layered alveolar lung models were able to maintain cell viability with relative similar proliferation profile over time as compared to non-printed cells. This DOD 3D bioprinting platform offers an attractive tool for highly repeatable and scalable fabrication of 3D in-vitro human alveolar lung models.

8.
Virology ; 557: 86-99, 2021 05.
Article in English | MEDLINE | ID: mdl-33677389

ABSTRACT

The distributions of the rac1, rhoA and cdc42 proteins in respiratory syncytial virus (RSV) infected cells was examined. All three rhoGTPases were detected within inclusion bodies, and while the rhoA and rac1 proteins were associated with virus filaments, only the rac1 protein was localised throughout the virus filaments. RSV infection led to increased rac1 protein activation, and using the rac1 protein inhibitor NS23766 we provided evidence that the increased rac1 activation occurred at the site of RSV assembly and facilitated F-actin remodeling during virus morphogenesis. A non-infectious virus-like particle (VLP) assay showed that the RSV VLPs formed in lipid-raft microdomains containing the rac1 protein, together with F-actin and filamin-1 (cell proteins associated with virus filaments). This provided evidence that the virus envelope proteins are trafficked to membrane microdomains containing the rac1 protein. Collectively, these data provide evidence that the rac1 protein plays a direct role in the RSV assembly process.


Subject(s)
Respiratory Syncytial Virus, Human/physiology , Virus Assembly , rac1 GTP-Binding Protein/genetics , Actins/metabolism , Cell Line , Humans , Respiratory Syncytial Virus, Human/genetics , rac1 GTP-Binding Protein/metabolism
9.
Infect Control Hosp Epidemiol ; 42(11): 1327-1332, 2021 11.
Article in English | MEDLINE | ID: mdl-33487210

ABSTRACT

BACKGROUND: Understanding the extent of aerosol-based transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for tailoring interventions for control of the coronavirus disease 2019 (COVID-19) pandemic. Multiple studies have reported the detection of SARS-CoV-2 nucleic acid in air samples, but only one study has successfully recovered viable virus, although it is limited by its small sample size. OBJECTIVE: We aimed to determine the extent of shedding of viable SARS-CoV-2 in respiratory aerosols from COVID-19 patients. METHODS: In this observational air sampling study, air samples from airborne-infection isolation rooms (AIIRs) and a community isolation facility (CIF) housing COVID-19 patients were collected using a water vapor condensation method into liquid collection media. Samples were tested for presence of SARS-CoV-2 nucleic acid using quantitative real-time polymerase chain reaction (qRT-PCR), and qRT-PCR-positive samples were tested for viability using viral culture. RESULTS: Samples from 6 (50%) of the 12 sampling cycles in hospital rooms were positive for SARS-CoV-2 RNA, including aerosols ranging from <1 µm to >4 µm in diameter. Of 9 samples from the CIF, 1 was positive via qRT-PCR. Viral RNA concentrations ranged from 179 to 2,738 ORF1ab gene copies per cubic meter of air. Virus cultures were negative after 4 blind passages. CONCLUSION: Although SARS-CoV-2 is readily captured in aerosols, virus culture remains challenging despite optimized sampling methodologies to preserve virus viability. Further studies on aerosol-based transmission and control of SARS-CoV-2 are needed.


Subject(s)
COVID-19 , RNA, Viral , Hospitals , Humans , Polymerase Chain Reaction , RNA, Viral/genetics , SARS-CoV-2
10.
Infect Control Hosp Epidemiol ; 42(6): 669-677, 2021 06.
Article in English | MEDLINE | ID: mdl-33081858

ABSTRACT

BACKGROUND: The risk of environmental contamination by severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in the intensive care unit (ICU) is unclear. We evaluated the extent of environmental contamination in the ICU and correlated this with patient and disease factors, including the impact of different ventilatory modalities. METHODS: In this observational study, surface environmental samples collected from ICU patient rooms and common areas were tested for SARS-CoV-2 by polymerase chain reaction (PCR). Select samples from the common area were tested by cell culture. Clinical data were collected and correlated to the presence of environmental contamination. Results were compared to historical data from a previous study in general wards. RESULTS: In total, 200 samples from 20 patient rooms and 75 samples from common areas and the staff pantry were tested. The results showed that 14 rooms had at least 1 site contaminated, with an overall contamination rate of 14% (28 of 200 samples). Environmental contamination was not associated with day of illness, ventilatory mode, aerosol-generating procedures, or viral load. The frequency of environmental contamination was lower in the ICU than in general ward rooms. Eight samples from the common area were positive, though all were negative on cell culture. CONCLUSION: Environmental contamination in the ICU was lower than in the general wards. The use of mechanical ventilation or high-flow nasal oxygen was not associated with greater surface contamination, supporting their use and safety from an infection control perspective. Transmission risk via environmental surfaces in the ICUs is likely to be low. Nonetheless, infection control practices should be strictly reinforced, and transmission risk via droplet or airborne spread remains.


Subject(s)
COVID-19/transmission , Cross Infection/transmission , Intensive Care Units , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , Cross Infection/prevention & control , Cross Infection/virology , Decontamination/methods , Female , Humans , Male , Middle Aged , Patients' Rooms , Real-Time Polymerase Chain Reaction , Respiration, Artificial/adverse effects , Risk Factors
11.
Nat Commun ; 11(1): 2800, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472043

ABSTRACT

Understanding the particle size distribution in the air and patterns of environmental contamination of SARS-CoV-2 is essential for infection prevention policies. Here we screen surface and air samples from hospital rooms of COVID-19 patients for SARS-CoV-2 RNA. Environmental sampling is conducted in three airborne infection isolation rooms (AIIRs) in the ICU and 27 AIIRs in the general ward. 245 surface samples are collected. 56.7% of rooms have at least one environmental surface contaminated. High touch surface contamination is shown in ten (66.7%) out of 15 patients in the first week of illness, and three (20%) beyond the first week of illness (p = 0.01, χ2 test). Air sampling is performed in three of the 27 AIIRs in the general ward, and detects SARS-CoV-2 PCR-positive particles of sizes >4 µm and 1-4 µm in two rooms, despite these rooms having 12 air changes per hour. This warrants further study of the airborne transmission potential of SARS-CoV-2.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Environmental Microbiology , Patients' Rooms , Pneumonia, Viral/virology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Cross-Sectional Studies , Female , Hospitals , Humans , Male , Middle Aged , Pandemics , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , SARS-CoV-2 , Time Factors
13.
JAMA ; 323(15): 1488-1494, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32125362

ABSTRACT

Importance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, in December 2019 and has spread globally with sustained human-to-human transmission outside China. Objective: To report the initial experience in Singapore with the epidemiologic investigation of this outbreak, clinical features, and management. Design, Setting, and Participants: Descriptive case series of the first 18 patients diagnosed with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection at 4 hospitals in Singapore from January 23 to February 3, 2020; final follow-up date was February 25, 2020. Exposures: Confirmed SARS-CoV-2 infection. Main Outcomes and Measures: Clinical, laboratory, and radiologic data were collected, including PCR cycle threshold values from nasopharyngeal swabs and viral shedding in blood, urine, and stool. Clinical course was summarized, including requirement for supplemental oxygen and intensive care and use of empirical treatment with lopinavir-ritonavir. Results: Among the 18 hospitalized patients with PCR-confirmed SARS-CoV-2 infection (median age, 47 years; 9 [50%] women), clinical presentation was an upper respiratory tract infection in 12 (67%), and viral shedding from the nasopharynx was prolonged for 7 days or longer among 15 (83%). Six individuals (33%) required supplemental oxygen; of these, 2 required intensive care. There were no deaths. Virus was detectable in the stool (4/8 [50%]) and blood (1/12 [8%]) by PCR but not in urine. Five individuals requiring supplemental oxygen were treated with lopinavir-ritonavir. For 3 of the 5 patients, fever resolved and supplemental oxygen requirement was reduced within 3 days, whereas 2 deteriorated with progressive respiratory failure. Four of the 5 patients treated with lopinavir-ritonavir developed nausea, vomiting, and/or diarrhea, and 3 developed abnormal liver function test results. Conclusions and Relevance: Among the first 18 patients diagnosed with SARS-CoV-2 infection in Singapore, clinical presentation was frequently a mild respiratory tract infection. Some patients required supplemental oxygen and had variable clinical outcomes following treatment with an antiretroviral agent.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Disease Progression , Drug Combinations , Female , Humans , Lopinavir/adverse effects , Lopinavir/therapeutic use , Male , Middle Aged , Oxygen Inhalation Therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Polymerase Chain Reaction , Respiratory Tract Infections/virology , Ritonavir/adverse effects , Ritonavir/therapeutic use , SARS-CoV-2 , Singapore/epidemiology , Virus Shedding
15.
Cells ; 9(2)2020 02 15.
Article in English | MEDLINE | ID: mdl-32075271

ABSTRACT

Although the influenza A virus H7N9 subtype circulates within several avian species, it can also infect humans with a severe disease outcome. To better understand the biology of the H7N9 virus we examined the host response to infection in avian and human cells. In this study we used the A/Anhui/1/2013 strain, which was isolated during the first wave of the H7N9 epidemic. The H7N9 virus-infected both human (Airway Epithelial cells) and avian (Chick Embryo Fibroblast) cells, and each infected host transcriptome was examined with bioinformatic tools and compared with other representative avian and human influenza A virus subtypes. The H7N9 virus induced higher expression changes (differentially regulated genes) in both cell lines, with more prominent changes observed in avian cells. Ortholog mapping of differentially expression genes identified significant enriched common and cell-type pathways during H7N9 infections. This data confirmed our previous findings that different influenza A virus subtypes have virus-specific replication characteristics and anti-virus signaling in human and avian cells. In addition, we reported for the first time, the new HIPPO signaling pathway in avian cells, which we hypothesized to play a vital role to maintain the antiviral state of H7N9 virus-infected avian cells. This could explain the absence of disease symptoms in avian species that tested positive for the presence of H7N9 virus.


Subject(s)
Influenza A Virus, H7N9 Subtype/physiology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology , A549 Cells , Animals , Chick Embryo , Chickens , Dogs , Gene Expression , Humans , Influenza in Birds/genetics , Influenza in Birds/metabolism , Influenza in Birds/virology , Influenza, Human/genetics , Influenza, Human/metabolism , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/metabolism , Signal Transduction
16.
Cells ; 9(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-32028682

ABSTRACT

In humans, (A549) cells impaired H9N2 virus nuclear export of the ribonucleoprotein (RNP) complex contrasted with the early and efficient nuclear export of the H1N1/WSN and pH1N1 virus RNP complexes. Although nuclear export of the RNP complex occurred via the nuclear pore complex, H9N2 virus infection also induced modifications in the nuclear envelope and induced cell cytotoxicity. Reduced PA protein levels in H9N2 virus-infected A549 cells occurred, and this phenomenon was independent of virus infection. Silencing the H1N1/WSN PA protein expression leads to impaired nuclear export of RNP complexes, suggesting that the impaired nuclear export of the H9N2 virus RNP complex may be one of the consequences of reduced PA protein levels. Early and efficient export of the RNP complex occurred in H9N2 virus-infected avian (CEF) cells, although structural changes in the nuclear envelope also occurred. Collectively our data suggest that a combination of delayed nuclear export and virus-induced cell cytotoxicity restricts H9N2 virus transmission in A549 cells. However, the early and efficient export of the RNP complex mitigated the effects of virus-induced cytotoxicity on H9N2 virus transmission in CEF cells. Our findings highlight the multi-factorial nature of host-adaptation of the polymerase proteins of avian influenza viruses in non-avian cell environments.


Subject(s)
Cell Nucleus/metabolism , Ducks/virology , Influenza A Virus, H9N2 Subtype/physiology , Lung/pathology , Lung/virology , Ribonucleoproteins/metabolism , Active Transport, Cell Nucleus , Animals , Cell Death , Cell Line , Chickens , Humans , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Viral Proteins/metabolism , Virus Replication
17.
Virol J ; 16(1): 71, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138237

ABSTRACT

BACKGROUND: Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods. METHODS: In order to propagate the novel birnavirus LCBV, the virus was inoculated into the Bluegill Fry (BF-2) cell line and similar clinical signs of disease were reproduced in an experimental fish challenge study using the virus isolate. Virus morphology was visualized using transmission electron microscopy (TEM). Biochemical analysis using chloroform and 5-Bromo-2'-deoxyuridine (BUDR) sensitivity assays were employed to characterize the virus. Next-Generation Sequencing (NGS) was also used to obtain the virus genome for genetic and phylogenetic analyses. RESULTS: The LCBV-infected BF-2 cell line showed cytopathic effects such as rounding and granulation of cells, localized cell death and detachment of cells observed at 3 to 5 days' post-infection. The propagated virus, when injected intra-peritoneally into naïve Asian seabass under experimental conditions, induced lesions similar to fish naturally infected with LCBV. Morphology of LCBV, visualized under TEM, revealed icosahedral particles around 50 nm in diameter. Chloroform and BUDR sensitivity assays confirmed the virus to be a non-enveloped RNA virus. Further genome analysis using NGS identified the virus to be a birnavirus with two genome segments. Phylogenetic analyses revealed that LCBV is more closely related to the Blosnavirus genus than to the Aquabirnavirus genus within the Birnaviridae family. CONCLUSIONS: These findings revealed the presence of a novel birnavirus that could be linked to the disease observed in the Asian seabass from the coastal fish farms in Singapore. This calls for more studies on disease transmission and enhanced surveillance programs to be carried out to understand pathogenicity and epidemiology of this novel virus. The gene sequences data obtained from the study can also pave way to the development of PCR-based diagnostic test methods that will enable quick and specific identification of the virus in future disease investigations.


Subject(s)
Bass/virology , Fish Diseases/virology , Genome, Viral , Infectious bursal disease virus/classification , Infectious bursal disease virus/isolation & purification , Animals , Aquaculture , Cell Line , High-Throughput Nucleotide Sequencing , Infectious bursal disease virus/ultrastructure , Microscopy, Electron, Transmission , Phylogeny , Polymerase Chain Reaction , Singapore
18.
J Infect Dis ; 219(12): 1913-1923, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30722024

ABSTRACT

BACKGROUND: Few studies have evaluated the relative cross-protection conferred by infection with different groups of viruses through studies of sequential infections in humans. We investigated the presence of short-lived relative cross-protection conferred by specific prior viral infections against subsequent febrile respiratory illness (FRI). METHODS: Men enlisted in basic military training between December 2009 and December 2014 were recruited, with the first FRI as the study entry point. ResPlex II assays and real-time polymerase chain reaction assays were used to detect viral pathogens in nasal wash samples, and survival analyses were performed to determine whether infection with particular viruses conferred short-lived relative cross-protection against FRI. RESULTS: Prior infection with adenovirus (hazard ratio [HR], 0.24; 95% confidence interval [CI], .14-.44) or influenza virus (HR, 0.52; 95% CI, .38-.73) conferred relative protection against subsequent FRI episode. Results were statistically significant even after adjustment for the interval between enlistment and FRI (P < .001). Adenovirus-positive participants with FRI episodes tended to be protected against subsequent infection with adenovirus, coronavirus, enterovirus/rhinovirus, and influenza virus (P = .062-.093), while men with influenza virus-positive FRI episodes tended be protected against subsequent infection with adenovirus (P = .044) and influenza virus (P = .081). CONCLUSION: Prior adenovirus or influenza virus infection conferred cross-protection against subsequent FRI episodes relative to prior infection due to other circulating viruses.


Subject(s)
Cross Protection/immunology , Respiratory Tract Infections/immunology , Virus Diseases/immunology , Viruses/immunology , Female , Humans , Male , Military Personnel , Respiratory Tract Infections/virology , Singapore , Survival Analysis , Virus Diseases/virology
19.
Viruses ; 10(12)2018 12 05.
Article in English | MEDLINE | ID: mdl-30563103

ABSTRACT

The poxviruses are large, linear, double-stranded DNA viruses about 130 to 230 kbp, that have an animal origin and evolved to infect a wide host range. Variola virus (VARV), the causative agent of smallpox, is a poxvirus that infects only humans, but other poxviruses such as monkey poxvirus and cowpox virus (CPXV) have crossed over from animals to infect humans. Therefore understanding the biology of poxviruses can devise antiviral strategies to prevent these human infections. In this study we used a system-based approach to examine the host responses to three orthopoxviruses, CPXV, vaccinia virus (VACV), and ectromelia virus (ECTV) in the murine macrophage RAW 264.7 cell line. Overall, we observed a significant down-regulation of gene expressions for pro-inflammatory cytokines, chemokines, and related receptors. There were also common and virus-specific changes in the immune-regulated gene expressions for each poxvirus-infected RAW cells. Collectively our results showed that the murine macrophage RAW 264.7 cell line is a suitable cell-based model system to study poxvirus host response.


Subject(s)
Cowpox virus/immunology , Cytokines/immunology , Ectromelia virus/immunology , Macrophages/immunology , Vaccinia virus/immunology , Animals , Chemokines/genetics , Chemokines/immunology , Cytokines/genetics , Down-Regulation , Gene Expression , Macrophages/virology , Mice , Microarray Analysis , Polymerase Chain Reaction , RAW 264.7 Cells , Up-Regulation
20.
Ecotoxicol Environ Saf ; 162: 112-120, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29990722

ABSTRACT

Exposure to mercury and other trace elements remains an important public health concern, worldwide. The present study involved a comprehensive field study to determine concentrations of fourteen trace elements (Al, As, Cr, Co, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, V and Zn) in surface water and different fish species from Tonlé Sap Lake in central Cambodia, during both the dry and wet seasons. Total arsenic (tAs) and Mn in surface water during the dry season exceeded WHO drinking water guidelines. Total mercury (tHg) concentrations (µg/g wet wt.) in fish during the wet season (GM = 0.055; CI95 = 0.01-0.26) were approximately 15 times higher (P < 0.05) compared to those during the dry season (GM = 0.0035; CI95 = 0.0004-0.033). Mean target hazard quotients (THQs) for inorganic arsenic (iAs), methyl mercury (MeHg), Mn and Pb were > 1, with estimated maximum values greatly exceeding 1. Mean THQs of Zn, Cd, Ni and Se were very near 1, with estimated maximum values exceeding 1. The MeHg THQ (min-max range: 0.16-9.09) during the wet season was 7 times higher than in the dry season (min-max range: 0.05-1.35). Concentrations of Hg and other trace elements varied widely between fish species. The findings suggest that exposure of some trace elements via water and food is of concern in this region. High consumption rates of fish and rice key factors related to trace element exposure. Seasonal hydrology and species-specific bioaccumulation behaviour in the Tonlé Sap Lake watershed also play an important role. The generated information will be useful to better mitigate trace element exposure in this region.


Subject(s)
Food Chain , Hydrology , Metals, Heavy/analysis , Seasons , Water Pollutants, Chemical/analysis , Animals , Arsenic/analysis , Cambodia , Diet , Drinking Water/analysis , Environmental Monitoring , Fishes , Food Contamination/analysis , Humans , Lakes , Lead/analysis , Manganese/analysis , Mercury/analysis , Methylmercury Compounds/analysis , Public Health , Recommended Dietary Allowances , Seafood/analysis , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...