Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2439, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117180

ABSTRACT

Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , p300-CBP Transcription Factors/metabolism , Snail Family Transcription Factors/metabolism , Transcription Factors/metabolism
2.
Stem Cells Int ; 2021: 1624669, 2021.
Article in English | MEDLINE | ID: mdl-34691189

ABSTRACT

Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.

3.
Nat Cell Biol ; 22(2): 175-186, 2020 02.
Article in English | MEDLINE | ID: mdl-31932739

ABSTRACT

Mouse embryonic stem cells (ESCs) sporadically transit into an early embryonic-like state characterized by the expression of 2-cell (2C) stage-restricted transcripts. Here, we identify a maternal factor-negative elongation factor A (NELFA)-whose heterogeneous expression in mouse ESCs is coupled to 2C gene upregulation and expanded developmental potential in vivo. We show that NELFA partners with Top2a in an interaction specific to the 2C-like state, and that it drives the expression of Dux-a key 2C regulator. Accordingly, loss of NELFA and/or Top2a suppressed Dux activation. Further characterization of 2C-like cells uncovered reduced glycolytic activity; remarkably, mere chemical suppression of glycolysis was sufficient to promote a 2C-like fate, obviating the need for genetic manipulation. Global chromatin state analysis on NELFA-induced cells revealed decommissioning of ESC-specific enhancers, suggesting ESC-state impediments to 2C reversion. Our study positions NELFA as one of the earliest drivers of the 2C-like state and illuminates factors and processes that govern this transition.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Animals , Cell Differentiation , Chromatin/chemistry , Chromatin/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Embryo, Mammalian , Female , Glycolysis/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Inheritance Patterns , Male , Mice , Mice, Transgenic , Mouse Embryonic Stem Cells/cytology , Multigene Family , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...