Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17241, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060348

ABSTRACT

Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45+ T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4+ T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45+ immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44+ T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice.


Subject(s)
Asthma , Ovalbumin , Progesterone , Animals , Female , Mice , Asthma/immunology , Asthma/drug therapy , Asthma/metabolism , Bronchoalveolar Lavage Fluid , Cellular Microenvironment/drug effects , Cytokines/metabolism , Disease Models, Animal , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Extracellular Traps/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Lung/immunology , Lung/pathology , Lung/drug effects , Lung/metabolism , Mice, Inbred BALB C , Ovalbumin/immunology , Progesterone/pharmacology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism
2.
PLoS One ; 19(6): e0305863, 2024.
Article in English | MEDLINE | ID: mdl-38913666

ABSTRACT

The efficacy of rosuvastatin in reducing allergic inflammation has been established. However, its potential to reduce airway remodeling has yet to be explored. This study aimed to evaluate the efficacy of rosuvastatin in reducing airway inflammation and remodeling in a mouse model of chronic allergic asthma induced by sensitization and challenge with OVA. Histology of the lung tissue and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) showed a marked decrease in airway inflammation and remodeling in mice treated with rosuvastatin, as evidenced by a decrease in goblet cell hyperplasia, collagen deposition, and smooth muscle hypertrophy. Furthermore, levels of inflammatory cytokines, angiogenesis-related factors, and OVA-specific IgE in BALF, plasma, and serum were all reduced upon treatment with rosuvastatin. Western blotting was employed to detect AMPK expression, while immunohistochemistry staining was used to observe the expression of remodeling signaling proteins such as α-SMA, TGF-ß, MMP-9, and p-AMPKα in the lungs. It was found that the activity of 5'-adenosine monophosphate-activated protein kinase alpha (AMPKα) was significantly lower in the lungs of OVA-induced asthmatic mice compared to Control mice. However, the administration of rosuvastatin increased the ratio of phosphorylated AMPK to total AMPKα, thus inhibiting the formation of new blood vessels, as indicated by CD31-positive staining mainly in the sub-epithelial region. These results indicate that rosuvastatin can effectively reduce airway inflammation and remodeling in mice with chronic allergic asthma caused by OVA, likely due to the reactivation of AMPKα and a decrease in angiogenesis.


Subject(s)
AMP-Activated Protein Kinases , Airway Remodeling , Asthma , Disease Models, Animal , Rosuvastatin Calcium , Signal Transduction , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/therapeutic use , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Airway Remodeling/drug effects , Mice , Ovalbumin , Female , Mice, Inbred BALB C , Bronchoalveolar Lavage Fluid , Chronic Disease , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Immunoglobulin E/blood
3.
Int Immunopharmacol ; 136: 112329, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38815351

ABSTRACT

PURPOSE: Our team identified a new cardiac glycoside, Toxicarioside H (ToxH), in a tropical plant. Previous research has indicated the potential of cardenolides in mitigating inflammation, particularly in the context of NETosis. Therefore, this study sought to examine the potential of ToxH in attenuating allergic airway inflammation by influencing the immune microenvironment. METHODS: An OVA-induced airway inflammation model was established in BALB/c mice. After the experiment was completed, serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected and further examined using H&E and PAS staining, flow cytometry, immunofluorescence observation, and Western blot analysis. RESULTS: Treatment with ToxH was found to be effective in reducing airway inflammation and mucus production. This was accompanied by an increase in Th1 cytokines (IFN-γ, IL-2, and TNF-ß), and the Th17 cytokine IL-17, while levels of Th2 cytokines (IL-4, IL-5, and IL-13) and Treg cytokines (IL-10 and TGF-ß1) were decreased in both the bronchoalveolar lavage fluid (BALF) and the CD45+ immune cells in the lungs. Additionally, ToxH inhibited the infiltration of inflammatory cells and decreased the number of pulmonary CD44+ memory T cells, while augmenting the numbers of Th17 and Treg cells. Furthermore, the neutrophil elastase inhibitor GW311616A was observed to suppress airway inflammation and mucus production, as well as alter the secretion of immune Th1, Th2, Th17, and Treg cytokines in the lung CD45+ immune cells. Moreover, our study also demonstrated that treatment with ToxH efficiently inhibited ROS generation, thereby rectifying the dysregulation of immune cells in the immune microenvironment in OVA-induced allergic asthma. CONCLUSIONS: Our findings indicate that ToxH could serve as a promising therapeutic intervention for allergic airway inflammation and various other inflammatory disorders. Modulating the balance of Th1/Th2 and Treg/Th17 cells within the pulmonary immune microenvironment may offer an effective strategy for controlling allergic airway inflammation.


Subject(s)
Cytokines , Lung , Mice, Inbred BALB C , Ovalbumin , Animals , Ovalbumin/immunology , Cytokines/metabolism , Lung/immunology , Lung/pathology , Lung/drug effects , Mice , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Female , Disease Models, Animal , Asthma/immunology , Asthma/drug therapy , Neutrophils/immunology , Neutrophils/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Mucus/metabolism , Mucus/immunology , Allergens/immunology
4.
Biomed Pharmacother ; 175: 116788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772153

ABSTRACT

AIMS: Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS: An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS: Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1ß, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE: PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Inflammasomes , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Female , Inflammasomes/metabolism , Inflammasomes/drug effects , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Mice , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/immunology , Oxidative Stress/drug effects , Ovalbumin , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/pathology , Disease Models, Animal , Dexamethasone/pharmacology , Anti-Inflammatory Agents/pharmacology
5.
PLoS One ; 19(3): e0299571, 2024.
Article in English | MEDLINE | ID: mdl-38466744

ABSTRACT

Phosphatases can dephosphorylate phosphorylated kinases, leading to their inactivation, and ferroptosis is a type of cell death. Therefore, our aim is to identify phosphatases associated with ferroptosis by analyzing the differentially expressed genes (DEGs) of the Luminal A Breast Cancer (LumABC) cohort from the Cancer Genome Atlas (TCGA). An analysis of 260 phosphatase genes from the GeneCard database revealed that out of the 28 DEGs with high expression, only the expression of pyruvate dehydrogenase phosphatase 2 (PDP2) had a significant correlation with patient survival. In addition, an analysis of DEGs using gene ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis revealed a significant variation in the expression of ferroptosis-related genes. To further investigate this, we analyzed 34 ferroptosis-related genes from the TCGA-LumABC cohort. The expression of long-chain acyl-CoA synthetase 4 (ACSL4) was found to have the highest correlation with the expression of PDP2, and its expression was also inversely proportional to the survival rate of patients. Western blot experiments using the MCF-7 cell line showed that the phosphorylation level of ACSL4 was significantly lower in cells transfected with the HA-PDP2 plasmid, and ferroptosis was correspondingly reduced (p < 0.001), as indicated by data from flow cytometry detection of membrane-permeability cell death stained with 7-aminoactinomycin, lipid peroxidation, and Fe2+. Immunoprecipitation experiments further revealed that the phosphorylation level of ACSL4 was only significantly reduced in cells where PDP2 and ACSL4 co-precipitated. These findings suggest that PDP2 may act as a phosphatase to dephosphorylate and inhibit the activity of ACSL4, which had been phosphorylated and activated in LumABC cells. Further experiments are needed to confirm the molecular mechanism of PDP2 inhibiting ferroptosis.


Subject(s)
Breast Neoplasms , Ferroptosis , Female , Humans , Breast Neoplasms/genetics , Coenzyme A Ligases/genetics , Ferroptosis/genetics , Lipid Peroxidation , Phosphoric Monoester Hydrolases , Phosphorylation , Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL