Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(7): e0181578, 2017.
Article in English | MEDLINE | ID: mdl-28732046

ABSTRACT

T-cell based vaccines have been considered as attractive candidates for prevention of hepatitis C virus (HCV) infections. In this study we compared the magnitude and phenotypic characteristics of CD8+ T-cells induced by three commonly used viral vectors, Adenovirus-5 (Ad5), Vaccinia virus (VV) and Modified Vaccinia Ankara (MVA) expressing the HCV NS3/4A protein. C57/BL6 mice were primed with DNA expressing NS3/4A and boosted with each of the viral vectors in individual groups of mice. We then tracked the vaccine-induced CD8+ T-cell responses using pentamer binding and cytokine production analysis. Overall, our data indicate that the memory cells induced by Ad5 were inferior to those induced by VV or MVA. We found that Ad5 boosting resulted in rapid expansion and significantly higher frequencies of NS3-specific T-cells compared to VV and MVA boosting. However, the functional profiles, assessed through analysis of the memory cell marker CD127 and the anti-apoptotic molecule Bcl-2 in the blood, spleen, and liver; and measurements of interferon-gamma, tumor necrosis factor-alpha, and interleukin-2 production indicated significantly lower frequencies of long-lived memory T-cells following Ad5 boosting compared to VV and MVA. This same set of analyses suggested that the memory cells induced following boosting with MVA were superior to those induced by both Ad5 and VV. This superiority of the MVA-induced CD8+ T-cells was confirmed following surrogate challenge of mice with a recombinant mouse herpes virus expressing the HCV NS3 protein. Higher levels of NS3-specific CD8+ T-cells displaying the functional markers CD69, Ki67 and Granzyme B were found in the spleens of mice boosted with MVA compared to VV and Ad5, both alone and in combination. These data suggest that MVA may be a more successful viral vector for induction of effective CD8+ T-cell responses against hepatitis C virus.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Hepatitis C/immunology , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Adenoviridae/immunology , Animals , Female , Genetic Vectors/immunology , Immunization, Secondary/methods , Interferon-gamma/immunology , Interleukin-2/immunology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-2 , Tumor Necrosis Factor-alpha/immunology , Vaccinia/immunology , Vaccinia virus/immunology
2.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27974559

ABSTRACT

mTOR has important roles in regulation of both innate and adaptive immunity, but whether and how mTOR modulates humoral immune responses have yet to be fully understood. To address this issue, we examined the effects of rapamycin, a specific inhibitor of mTOR, on B cell and CD4 T cell responses during acute infection with lymphocytic choriomeningitis virus. Rapamycin treatment resulted in suppression of virus-specific B cell responses by inhibiting proliferation of germinal center (GC) B cells. In contrast, the number of memory CD4 T cells was increased in rapamycin-treated mice. However, the drug treatment caused a striking bias of CD4 T cell differentiation into Th1 cells and substantially impaired formation of follicular helper T (Tfh) cells, which are essential for humoral immunity. Further experiments in which mTOR signaling was modulated by RNA interference (RNAi) revealed that B cells were the primary target cells of rapamycin for the impaired humoral immunity and that reduced Tfh formation in rapamycin-treated mice was due to lower GC B cell responses that are essential for Tfh generation. Additionally, we found that rapamycin had minimal effects on B cell responses activated by lipopolysaccharide (LPS), which stimulates B cells in an antigen-independent manner, suggesting that rapamycin specifically inhibits B cell responses induced by B cell receptor stimulation with antigen. Together, these findings demonstrate that mTOR signals play an essential role in antigen-specific humoral immune responses by differentially regulating B cell and CD4 T cell responses during acute viral infection and that rapamycin treatment alters the interplay of immune cell subsets involved in antiviral humoral immunity. IMPORTANCE: mTOR is a serine/threonine kinase involved in a variety of cellular activities. Although its specific inhibitor, rapamycin, is currently used as an immunosuppressive drug in transplant patients, it has been reported that rapamycin can also stimulate pathogen-specific cellular immunity in certain circumstances. However, whether and how mTOR regulates humoral immunity are not well understood. Here we found that rapamycin treatment predominantly inhibited GC B cell responses during viral infection and that this led to biased helper CD4 T cell differentiation as well as impaired antibody responses. These findings suggest that inhibition of B cell responses by rapamycin may play an important role in regulation of allograft-specific antibody responses to prevent organ rejection in transplant recipients. Our results also show that consideration of antibody responses is required in cases where rapamycin is used to stimulate vaccine-induced immunity.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Host-Pathogen Interactions/immunology , Immunity, Humoral , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/drug effects , B-Lymphocyte Subsets/drug effects , Cell Line , Cell Survival/drug effects , Germinal Center/immunology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Immunization , Immunologic Memory , Immunomodulation/drug effects , Mice , Mice, Transgenic , Signal Transduction , Sirolimus/pharmacology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transduction, Genetic , Virus Diseases/immunology , Virus Diseases/metabolism
3.
Nat Immunol ; 15(12): 1152-61, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25362489

ABSTRACT

The importance of autophagy in the generation of memory CD8(+) T cells in vivo is not well defined. We report here that autophagy was dynamically regulated in virus-specific CD8(+) T cells during acute infection of mice with lymphocytic choriomeningitis virus. In contrast to the current paradigm, autophagy decreased in activated proliferating effector CD8(+) T cells and was then upregulated when the cells stopped dividing just before the contraction phase. Consistent with those findings, deletion of the gene encoding either of the autophagy-related molecules Atg5 or Atg7 had little to no effect on the proliferation and function of effector cells, but these autophagy-deficient effector cells had survival defects that resulted in compromised formation of memory T cells. Our studies define when autophagy is needed during effector and memory differentiation and warrant reexamination of the relationship between T cell activation and autophagy.


Subject(s)
Autophagy/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Immunologic Memory/immunology , Animals , Cell Separation , Cell Survival/immunology , Chromatography, Liquid , Flow Cytometry , Immunoblotting , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/immunology , Mass Spectrometry , Mice , Mice, Mutant Strains , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Transduction, Genetic
4.
J Clin Invest ; 123(6): 2604-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23676462

ABSTRACT

The inhibitory receptor programmed cell death 1 (PD-1) plays a major role in functional exhaustion of T cells during chronic infections and cancer, and recent clinical data suggest that blockade of the PD-1 pathway is an effective immunotherapy in treating certain cancers. Thus, it is important to define combinatorial approaches that increase the efficacy of PD-1 blockade. To address this issue, we examined the effect of IL-2 and PD-1 ligand 1 (PD-L1) blockade in the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We found that low-dose IL-2 administration alone enhanced CD8+ T cell responses in chronically infected mice. IL-2 treatment also decreased inhibitory receptor levels on virus-specific CD8+ T cells and increased expression of CD127 and CD44, resulting in a phenotype resembling that of memory T cells. Surprisingly, IL-2 therapy had only a minimal effect on reducing viral load. However, combining IL-2 treatment with blockade of the PD-1 inhibitory pathway had striking synergistic effects in enhancing virus-specific CD8+ T cell responses and decreasing viral load. Interestingly, this reduction in viral load occurred despite increased numbers of Tregs. These results suggest that combined IL-2 therapy and PD-L1 blockade merits consideration as a regimen for treating human chronic infections and cancer.


Subject(s)
Arenaviridae Infections/drug therapy , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Interleukin-2/administration & dosage , Lymphocytic choriomeningitis virus/immunology , Animals , Antibodies/administration & dosage , Antibodies/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Chronic Disease , Drug Synergism , Female , Humans , Hyaluronan Receptors/metabolism , Immunologic Factors/administration & dosage , Immunologic Factors/pharmacology , Immunotherapy , Interleukin-2/pharmacology , Interleukin-7 Receptor alpha Subunit/metabolism , Lymphocyte Activation , Lymphocytic choriomeningitis virus/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
5.
J Virol ; 87(3): 1359-72, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23175355

ABSTRACT

Adenovirus (Ad) vectors are widely used as experimental vaccines against several infectious diseases, but the magnitude, phenotype, and functionality of CD8(+) T cell responses induced by different adenovirus serotypes have not been compared. To address this question, we have analyzed simian immunodeficiency virus Gag-specific CD8(+) T cell responses in mice following vaccination with Ad5, Ad26, and Ad35. Our results show that although Ad5 is more immunogenic than Ad26 and Ad35, the phenotype, function, and recall potential of memory CD8(+) T cells elicited by these vectors are substantially different. Ad26 and Ad35 vectors generated CD8(+) T cells that display the phenotype and function of long-lived memory T cells, whereas Ad5 vector-elicited CD8(+) T cells are of a more terminally differentiated phenotype. In addition, hepatic memory CD8(+) T cells elicited by Ad26 and Ad35 mounted more robust recall proliferation following secondary challenge than those induced by Ad5. Furthermore, the boosting potential was higher following priming with alternative-serotype Ad vectors than with Ad5 vectors in heterologous prime-boost regimens. Anamnestic CD8(+) T cell responses were further enhanced when the duration between priming and boosting was extended from 30 to 60 days. Our results demonstrate that heterologous prime-boost vaccine regimens with alternative-serotype Ad vectors elicited more functional memory CD8(+) T cells than any of the regimens containing Ad5. In summary, these results suggest that alternative-serotype Ad vectors will prove useful as candidates for vaccine development against human immunodeficiency virus type 1 and other pathogens and also emphasize the importance of a longer rest period between prime and boost for generating optimal CD8(+) T cell immunity.


Subject(s)
Adenoviridae/genetics , CD8-Positive T-Lymphocytes/immunology , Gene Products, gag/immunology , Genetic Vectors , Immunologic Memory , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Animals , Mice , Mice, Inbred C57BL , Vaccination/methods
6.
J Immunol ; 188(1): 77-84, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22116826

ABSTRACT

Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dietary Proteins , Immunologic Memory , Protein Deficiency/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Female , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Transgenic , Protein Deficiency/genetics , Protein Deficiency/pathology , Protein Deficiency/virology
7.
Immunity ; 35(2): 285-98, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21856186

ABSTRACT

To design successful vaccines for chronic diseases, an understanding of memory CD8(+) T cell responses to persistent antigen restimulation is critical. However, most studies comparing memory and naive cell responses have been performed only in rapidly cleared acute infections. Herein, by comparing the responses of memory and naive CD8(+) T cells to acute and chronic lymphocytic choriomeningitis virus infection, we show that memory cells dominated over naive cells and were protective when present in sufficient numbers to quickly reduce infection. In contrast, when infection was not rapidly reduced, because of high antigen load or persistence, memory cells were quickly lost, unlike naive cells. This loss of memory cells was due to a block in sustaining cell proliferation, selective regulation by the inhibitory receptor 2B4, and increased reliance on CD4(+) T cell help. Thus, emphasizing the importance of designing vaccines that elicit effective CD4(+) T cell help and rapidly control infection.


Subject(s)
Antigens, CD/metabolism , Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytic choriomeningitis virus/physiology , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/metabolism , Acute Disease , Adoptive Transfer , Animals , Antigens, CD/immunology , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Chronic Disease , Cytokines/immunology , Cytokines/metabolism , Immunologic Memory , Lymphocytic choriomeningitis virus/pathogenicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Paracrine Communication , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Immunologic/immunology , Signaling Lymphocytic Activation Molecule Family , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/virology , Viral Load , Viral Vaccines
8.
Proc Natl Acad Sci U S A ; 107(33): 14733-8, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20679213

ABSTRACT

Inhibitory receptors play a crucial role in regulating CD8 T-cell function during chronic viral infection. T-cell Ig- and mucin-domain-containing molecule-3 (Tim-3) is well known to negatively regulate T-cell responses, but its role in CD8 T-cell exhaustion during chronic infection in vivo remains unclear. In this study, we document coregulation of CD8 T cell exhaustion by Tim-3 and PD-1 during chronic lymphocytic choriomeningitis virus infection. Whereas Tim-3 was only transiently expressed by CD8 T cells after acute infection, virus-specific CD8 T cells retained high Tim-3 expression throughout chronic infection. The majority (approximately 65% to 80%) of lymphocytic choriomeningitis virus-specific CD8 T cells in lymphoid and nonlymphoid organs coexpressed Tim-3 and PD-1. This coexpression of Tim-3 and PD-1 was associated with more severe CD8 T-cell exhaustion in terms of proliferation and secretion of effector cytokines such as IFN-gamma, TNF-alpha, and IL-2. Interestingly, CD8 T cells expressing both inhibitory receptors also produced the suppressive cytokine IL-10. Most importantly, combined blockade of Tim-3 and PD-1 pathways in vivo synergistically improved CD8 T cell responses and viral control in chronically infected mice. Taken together, our study defines a parameter for determining the severity of CD8 T cell dysfunction and for identifying virus-specific CD8 T cells that produce IL-10, and shows that targeting both PD-1 and Tim-3 is an effective immune strategy for treating chronic viral infections.


Subject(s)
Antigens, Surface/immunology , Apoptosis Regulatory Proteins/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Receptors, Virus/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antigens, Surface/metabolism , Antigens, Viral/immunology , Apoptosis Regulatory Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Chronic Disease , Female , Flow Cytometry , Hepatitis A Virus Cellular Receptor 2 , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-2/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Virus/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Virology ; 323(1): 70-84, 2004 May 20.
Article in English | MEDLINE | ID: mdl-15165820

ABSTRACT

Frog virus 3 (FV3) is the type species member of the genus Ranavirus (family Iridoviridae). To better understand the molecular mechanisms involved in the replication of FV3, including transcription of its highly methylated DNA genome, we have determined the complete nucleotide sequence of the FV3 genome. The FV3 genome is 105903 bp long excluding the terminal redundancy. The G + C content of FV3 genome is 55% and it encodes 98 nonoverlapping potential open reading frames (ORFs) containing 50-1293 amino acids. Eighty-four ORFs have significant homology to known proteins of other iridoviruses, whereas twelve of these unique FV3 proteins do not share homology to any known protein. A microsatellite containing a stretch of 34 tandemly repeated CA dinucleotide in a noncoding region was detected. To date, no such sequence has been reported in any animal virus.


Subject(s)
Genome, Viral , Ranavirus/classification , Ranavirus/genetics , Sequence Analysis, DNA , Animals , Base Sequence , Cell Line , Iridoviridae/classification , Iridoviridae/genetics , Microsatellite Repeats , Molecular Sequence Data , Open Reading Frames , Ranavirus/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...