Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10139, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698176

ABSTRACT

In this paper, we investigate the violation of the quantum witness, the entropic Leggett-Garg inequality (LGI) and the no-coherence-generating-and-detecting (NCGD) dynamics, under projective and coarsening measurements. We consider a qubit in the three scenarios: coherent dynamics, in the presence of dissipation, and in the presence of dephasing. For the pure qubit, we find that in the case of the projective measurement, the non-violation conditions of the quantum witness and the NCGD are the same; while the non-violation conditions of the entropic LGI and the quantum witness do not contain each other, i.e., a suitable conjunction of the quantum witness and the entropic LGI may be better for testing macrorealism. Also, for the pure qubit with coarsening measurement similar results can be obtained. For the dissipative qubit with projective measurement, the quantum witness and the NCGD can be both violated for a wider parameter regime than the entropic LGI. For the dissipative qubit with coarsening measurement, the violation of the NCGD is the most robust compared to the quantum witness and the entropic LGI. For the dephasing qubit with projective and coarsening measurements, the relationship among the quantum witness, the entropic LGI and the NCGD is similar to that of the pure qubit. In addition, we find that for pure, dissipative and dephasing qubits, the robustness of the coarsening measurement in final resolution is more vulnerable than that of the coarsening measurement in reference for the entropic LGI.

2.
Opt Express ; 31(24): 40604-40619, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041356

ABSTRACT

The conventional direct parameter extraction method generally suffers from cumbersome due to redundant experiments. An efficient and systematical parameter extracting solution is proposed based on an equivalent circuit model of distributed feedback (DFB) lasers. The successfully built circuit model includes the necessary intrinsic parameters in the rate equations and the extrinsic parameters to provide a better approximation of the actual laser. This method is experimentally verified through a DFB laser chip measurement of electronic and optical performance under the same conditions. Finally, the nine intrinsic parameters in the rate equations and five extrinsic parameters in the model are efficiently extracted using this technique from a set of experimental characteristics of a DFB laser chip. Modeled and measured results for the laser output characteristics exhibit good agreement when the extracted parameters are used. The method is versatile for other semiconductor lasers that can be modeled using rate equations. Comparison with simulation results of published laser models further validates the reliability of the presented model and extraction method.

3.
Sci Rep ; 13(1): 12530, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532739

ABSTRACT

In this paper, we consider a qubit in four scenarios: with drive, without drive, and in the presence of dissipation and dephasing, to investigate the quantum violation of the Leggett-Garg inequality (LGI) in an energy constraint. In the case of the energy constraint, we find that under the coarsening measurement in reference and final resolution, the quantum violation of the LGI for the pure qubit is the most robust; on the other hand, the quantum violation of the LGI for the dephasing qubit is the most vulnerable, and the quantum violation of the LGI for driven qubit lies between that of pure qubit and dissipation qubit. Under the coarsening of measurement temporal reference, the quantum violation of the LGI for the pure qubit is more robust than that of the qubit with driven. Moreover, in the case of a qubit that is subjected to driving and is in the presence of dissipation and dephasing, the robustness of quantum violations of the LGI for these scenario systems will become vulnerable, with the driven intensity and the rate of spontaneous emission increasing, respectively, for coarsening measurement both in reference and in final resolution. In addition, in the energy constraint and the projective measurement, the LGI can attain its maximum violation value, 1.5, for the coherent dynamics; while for drive, dissipative and dephasing qubits, the LGI cannot attain the value of 1.5. For systems in the presence of dissipation and dephasing, we find that in the energy constraint, the robustness of the coarsening measurement in final resolution exhibits more vulnerable than that of the coarsening measurement in reference. And for systems with drive and without drive, the robustness of the coarsening measurement in temporal reference is the most robust, and the robustness of the coarsening of measurement final measurement resolution is the most vulnerable.

SELECTION OF CITATIONS
SEARCH DETAIL