Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurochem Res ; 49(7): 1735-1750, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530508

ABSTRACT

The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.


Subject(s)
Anxiety , Diet, High-Fat , Gastrointestinal Microbiome , Graphite , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Male , Graphite/therapeutic use , Graphite/pharmacology , Gastrointestinal Microbiome/drug effects , Anxiety/etiology , Anxiety/metabolism , Infrared Rays/therapeutic use , Obesity/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Mice, Obese , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
2.
Chin Med ; 17(1): 134, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471367

ABSTRACT

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS: The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS: XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS: We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.

3.
Int Immunopharmacol ; 98: 107897, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34182243

ABSTRACT

Alcoholism represents a predisposing factor for liver-related morbidity and mortality worldwide. Pogostemon cablin has been widely used in China for the treatment of digestive system diseases. Patchouli oil, the major active fraction of Pogostemon cablin, can ameliorate alcohol-induced acute liver injury (ALI). However, patchouli alcohol (PA),a principal bioactive ingredient of PO, exerts a protection against ALI remains elusive. Thepresentwork focused on the hepatoprotection of PA against acute ethanol-induced hepatotoxicity in rats. In this study, male Wistar rats orally received PA (10, 20, or 40 mg/kg), PO (400 mg/kg) and silymarin (200 mg/kg) for ten days. On the 8th day, the rats orally received 65% ethanol (10 mL/kg, 6.5 g/kg) every 12 h for 3 days. Results showed that PA wasfound to reduce alcohol-induced ALI, as evidenced bysignificantly alleviated histopathologicalalterations, decreased the elevation ofALT and AST levels, and enhancedthe alcoholdehydrogenase(ADH) andaldehyde dehydrogenase (ALDH) activities. Additionally, PA markedly suppressed ROS levels and increased antioxidant enzyme activities via the CYP2E1/ROS/Nrf2/HO-1 pathway. PA regulated lipid accumulation by markedly inhibiting the expression of lipogenesis-related genes and stimulating that of lipolysis-relatedgenes, which were associated with the activation of theAMPKpathway. What's more, PA pretreatment also restored acute alcohol-inducedalterationsin gut barrier function, colonic histopathology, and gut microbiota richness and evenness. PA pretreatment alleviated gut-origin LPS-inducedinflammation by inhibiting the MyD88/TLR4/NF-κB signal pathway. In general, PA ameliorates ethanol-induced ALI via restoration of CYP2E1/ROS/Nrf2/HO-1-mediatedoxidativestressand AMPK-mediated fat accumulation, as well as alleviation of gut-LPS-leakage-induced inflammation regulated by the MyD88/TLR4/NF-κB signaling pathway.


Subject(s)
Gastrointestinal Microbiome/immunology , Intestinal Mucosa/drug effects , Liver Failure, Acute/drug therapy , Liver/drug effects , Sesquiterpenes/pharmacology , Animals , Disease Models, Animal , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Lipogenesis/drug effects , Lipogenesis/immunology , Lipolysis/drug effects , Lipolysis/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Liver/immunology , Liver/pathology , Liver Failure, Acute/immunology , Liver Failure, Acute/pathology , Male , Oxidative Stress/drug effects , Oxidative Stress/immunology , Rats , Reactive Oxygen Species/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/therapeutic use , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL