Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753456

ABSTRACT

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Subject(s)
Carotid Artery Diseases , Positron-Emission Tomography , Stress Disorders, Post-Traumatic , Humans , Female , Male , Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Middle Aged , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Radiopharmaceuticals , Case-Control Studies , Stress, Psychological/physiopathology , Stress, Psychological/complications
2.
J Comp Neurol ; 532(5): e25618, 2024 May.
Article in English | MEDLINE | ID: mdl-38686628

ABSTRACT

The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.


Subject(s)
Canidae , Caudate Nucleus , Felidae , Magnetic Resonance Imaging , Animals , Caudate Nucleus/anatomy & histology , Caudate Nucleus/diagnostic imaging , Felidae/anatomy & histology , Felidae/physiology , Canidae/anatomy & histology , Magnetic Resonance Imaging/methods , Male , Behavior, Animal/physiology , Female , Species Specificity , Brain/anatomy & histology
3.
Mol Pharmacol ; 105(4): 272-285, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38351270

ABSTRACT

The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.


Subject(s)
Depressive Disorder, Major , Ketamine , RGS Proteins , Mice , Humans , Animals , Ketamine/pharmacology , Transcriptome , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Mice, Knockout , RGS Proteins/genetics , RGS Proteins/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Prefrontal Cortex/metabolism , Gene Expression Profiling , GTP-Binding Proteins/metabolism
4.
medRxiv ; 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37503251

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdeltasignificantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetricdelta between groups (p=0.041). The reduced ECdelta in the right amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.

5.
Transl Psychiatry ; 13(1): 239, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37429850

ABSTRACT

World Trade Center (WTC) responders exposed to traumatic and environmental stressors during rescue and recovery efforts have a high prevalence of chronic WTC-related post-traumatic stress disorder (WTC-PTSD). We investigated neural mechanisms underlying WTC-PTSD by applying eigenvector centrality (EC) metrics and data-driven methods on resting state functional magnetic resonance (fMRI). We identified how EC differences relate to WTC-exposure and behavioral symptoms. We found that connectivity differentiated significantly between WTC-PTSD and non-PTSD responders in nine brain regions, as these differences allowed an effective discrimination of PTSD and non-PTSD responders based solely on analysis of resting state data. Further, we found that WTC exposure duration (months on site) moderates the association between PTSD and EC values in two of the nine brain regions; the right anterior parahippocampal gyrus and the left amygdala (p = 0.010; p = 0.005, respectively, adjusted for multiple comparisons). Within WTC-PTSD, a dimensional measure of symptom severity was positively associated with EC values in the right anterior parahippocampal gyrus and brainstem. Functional neuroimaging can provide effective tools to identify neural correlates of diagnostic and dimensional indicators of PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/diagnostic imaging , Amygdala/diagnostic imaging , Brain Stem , Functional Neuroimaging
6.
Biol Psychiatry Glob Open Sci ; 3(3): 460-469, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519473

ABSTRACT

Background: Early-life environmental exposures during critical windows (CWs) of development can impact life course health. Exposure to neuroactive metals such as manganese (Mn) during prenatal and early postnatal CWs may disrupt typical brain development, leading to persistent behavioral changes. Males and females may be differentially vulnerable to Mn, presenting distinctive CWs to Mn exposure. Methods: We used magnetic resonance imaging to investigate sex-specific associations between early-life Mn uptake and intrinsic functional connectivity in adolescence. A total of 71 participants (15-23 years old; 53% female) from the Public Health Impact of Manganese Exposure study completed a resting-state functional magnetic resonance imaging scan. We estimated dentine Mn concentrations at prenatal, postnatal, and early childhood periods using laser ablation-inductively coupled plasma-mass spectrometry. We performed seed-based correlation analyses to investigate the moderating effect of sex on the associations between Mn and intrinsic functional connectivity adjusting for age and socioeconomic status. Results: We identified significant sex-specific associations between dentine Mn at all time points and intrinsic functional connectivity in brain regions involved in cognitive and motor function: 1) prenatal: dorsal striatum, occipital/frontal lobes, and middle frontal gyrus; 2) postnatal: right putamen and cerebellum; and 3) early childhood: putamen and occipital, frontal, and temporal lobes. Network associations differed depending on exposure timing, suggesting that different brain networks may present distinctive CWs to Mn. Conclusions: These findings suggest that the developing brain is vulnerable to Mn exposure, with effects lasting through late adolescence, and that females and males are not equally vulnerable to these effects. Future studies should investigate cognitive and motor outcomes related to these associations.

7.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205412

ABSTRACT

The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

8.
Front Neurosci ; 17: 1098441, 2023.
Article in English | MEDLINE | ID: mdl-36814793

ABSTRACT

Introduction: Adolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. Methods: In 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. Results: We observed significant negative associations between the metal mixture and GE and LE [ßGE = -0.076, 95% CI (-0.122, -0.031); ßLE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. Discussion: Our results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal.

9.
Psychiatry Res ; 320: 115032, 2023 02.
Article in English | MEDLINE | ID: mdl-36610318

ABSTRACT

Suicide research/clinical work remain in dire need of effective tools that can better predict suicidal behavior. A growing body of literature has started to focus on the role that neuroimaging may play in helping explain the path towards suicide. Specifically, structural alterations of rostral anterior cingulate cortex (rost-ACC) may represent a biological marker and/or indicator of suicide risk in Major Depressive Disorder (MDD). Furthermore, the construct of "grit," defined as perseverance for goal-attainment and shown to be associated with suicidality, is modulated by rost-ACC. The aim was to examine relationships among rost-ACC gray matter volume, grit, and suicidality in U.S. Military Veterans. Participants were age-and-sex-matched Veterans with MDD: with suicide attempt (MDD+SA:n = 23) and without (MDD-SA:n = 37). Groups did not differ in depression symptomatology. Participants underwent diagnostic interview, clinical symptom assessment, and 3T-MRI-scan. A Group (SA-vs.-No-SA) x Cingulate-region (rostral-caudal-posterior) x Hemisphere (left-right) mixed-model-multivariate-ANOVA was conducted. Left-rost-ACC was significantly smaller in MDD+SA, Group x Cingulate-region x Hemisphere-interaction. Lower grit and less left-rost-ACC gray matter each predicted suicide attempt history, but grit level was a more robust predictor of SA. Both structural alterations of rost-ACC and grit level represent potentially valuable tools for suicide risk assessment.


Subject(s)
Depressive Disorder, Major , Veterans , Humans , Depressive Disorder, Major/psychology , Veterans/psychology , Suicide, Attempted/psychology , Suicidal Ideation , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods
10.
Front Comput Neurosci ; 17: 1302010, 2023.
Article in English | MEDLINE | ID: mdl-38260714

ABSTRACT

Introduction: The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). Methods: We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13-25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Results: Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Discussion: Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

11.
J Affect Disord ; 311: 432-439, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35598747

ABSTRACT

BACKGROUND: The hippocampus and cingulate gyrus are strongly interconnected brain regions that have been implicated in the neurobiology of post-traumatic stress disorder (PTSD). These brain structures are comprised of functionally distinct subregions that may contribute to the expression of PTSD symptoms or associated cardio-metabolic markers, but have not been well investigated in prior studies. METHODS: Two divisions of the cingulate cortex (i.e., rostral and caudal) and 11 hippocampal subregions were investigated in 22 male combat-exposed veterans with PTSD and 22 male trauma-exposed veteran controls (TC). Cardio-metabolic measures included cholesterol, body mass index, and mean arterial pressure. RESULTS: Individuals with PTSD had less caudal cingulate area compared to TC even after controlling for caudal cingulate thickness. Total hippocampus volume was lower in PTSD compared to TC, accounted for by differences in CA1-CA4, granule cell layer of the dentate gyrus, molecular layer, and subiculum. Individuals with PTSD had higher mean arterial pressure compared to TC, which correlated with hippocampus volume only in the PTSD group. LIMITATIONS: Sample size, cross-sectional analysis, no control for medications and findings limited to males. CONCLUSIONS: These data demonstrate preferential involvement of caudal cingulate area (vs. thickness) and hippocampus subregions in PTSD. The inverse association between hippocampus volume and mean arterial pressure may contribute to accelerated aging known to be associated with PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Cross-Sectional Studies , Gyrus Cinguli/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Stress Disorders, Post-Traumatic/diagnostic imaging
12.
Psychiatry Res Neuroimaging ; 322: 111463, 2022 06.
Article in English | MEDLINE | ID: mdl-35240516

ABSTRACT

Schizotypal personality disorder (SPD) resembles schizophrenia, but with attenuated brain abnormalities and the absence of psychosis. The thalamus is integral for processing and transmitting information across cortical regions and widely implicated in the neurobiology of schizophrenia. Comparing thalamic connectivity in SPD and schizophrenia could reveal an intermediate schizophrenia-spectrum phenotype to elucidate neurobiological risk and protective factors in psychosis. We used rsfMRI to investigate functional connectivity between the mediodorsal nucleus (MDN) and pulvinar, and their connectivity with frontal and temporal cortical regions, respectively in 43 healthy controls (HCs), and individuals in the schizophrenia-spectrum including 45 psychotropic drug-free individuals with SPD, and 20 individuals with schizophrenia-related disorders [(schizophrenia (n = 10), schizoaffective disorder (n = 8), schizophreniform disorder (n = 1) and psychosis NOS (n = 1)]. Individuals with SPD had greater functional connectivity between the MDN and pulvinar compared to individuals with schizophrenia. Thalamo-frontal (i.e., between the MDN and rostral middle frontal cortex) connectivity was comparable in SPD and HCs; in SPD greater connectivity was associated with less symptom severity. Individuals with schizophrenia had less thalamo-frontal connectivity and thalamo-temporal (i.e., pulvinar to the transverse temporal cortex) connectivity compared with HCs. Thalamo-frontal functional connectivity may be comparable in SPD and HCs, but abnormal in schizophrenia, and that this may be protective against psychosis in SPD.


Subject(s)
Schizophrenia , Schizotypal Personality Disorder , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Schizotypal Personality Disorder/diagnostic imaging , Temporal Lobe , Thalamus/diagnostic imaging
14.
Br J Anaesth ; 128(1): 65-76, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34802696

ABSTRACT

BACKGROUND: Arousal and awareness are two important components of consciousness states. Functional neuroimaging has furthered our understanding of cortical and thalamocortical mechanisms of awareness. Investigating the relationship between subcortical functional connectivity and arousal has been challenging owing to the relatively small size of brainstem structures and thalamic nuclei, and their depth in the brain. METHODS: Resting state functional MRI scans of 72 healthy volunteers were acquired before, during, 1 h after, and 1 day after sevoflurane general anaesthesia. Functional connectivity of subcortical regions of interest vs whole brain and homotopic functional connectivity for assessment of left-right symmetry analyses of both cortical and subcortical regions of interest were performed. Both analyses used high resolution atlases generated from deep brain stimulation applications. RESULTS: Functional connectivity in subcortical loci within the thalamus and of the ascending reticular activating system was sharply restricted under anaesthesia, featuring a general lateralisation of connectivity. Similarly, left-right homology was sharply reduced under anaesthesia. Subcortical bilateral functional connectivity was not fully restored after emergence from anaesthesia, although greater restoration was seen between ascending reticular activating system loci and specific thalamic nuclei thought to be involved in promoting and maintaining arousal. Functional connectivity was fully restored to baseline by the following day. CONCLUSIONS: Functional connectivity in the subcortex is sharply restricted and lateralised under general anaesthesia. This restriction may play a part in loss and return of consciousness. CLINICAL TRIAL REGISTRATION: NCT02275026.


Subject(s)
Anesthetics, Inhalation/pharmacology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Sevoflurane/pharmacology , Adult , Aged , Aged, 80 and over , Anesthesia, General/methods , Anesthetics, Inhalation/administration & dosage , Arousal , Awareness , Female , Functional Neuroimaging , Humans , Male , Middle Aged , Sevoflurane/administration & dosage
15.
J Pers Disord ; 35(4): 618-631, 2021 08.
Article in English | MEDLINE | ID: mdl-33779281

ABSTRACT

Self-harming behavior (SB) is one of the diagnostic criteria for borderline personality disorder (BPD). However, it is not exhibited by all individuals with BPD. Furthermore, studies examining the neural correlates of SB in BPD are lacking. Given research showing that BPD patients have difficulty habituating to affective stimuli, this study investigated whether anomalous amygdala activation is specific to BPD patients with SB. The authors used fMRI to compare amygdala activation in BPD patients with SB (n = 15) to BPD patients without SB (n = 18) and healthy controls (n = 32) during a task involving pleasant, neutral, and unpleasant pictures, presented twice. BPD patients with SB demonstrated greater amygdala activity during the second presentation of unpleasant pictures. Results highlight neurobiological differences in BPD patients with and without SB and suggest that anomalous amygdala habituation to unpleasant stimuli may be related to SB.


Subject(s)
Borderline Personality Disorder , Amygdala/diagnostic imaging , Emotions , Habituation, Psychophysiologic , Humans , Magnetic Resonance Imaging
16.
PLoS One ; 16(3): e0247678, 2021.
Article in English | MEDLINE | ID: mdl-33770816

ABSTRACT

Cognitive dysfunction after surgery under general anesthesia is a well-recognized clinical phenomenon in the elderly. Physiological effects of various anesthetic agents have been studied at length. Very little is known about potential effects of anesthesia on brain structure. In this study we used Diffusion Tensor Imaging to compare the white matter microstructure of healthy control subjects under sevoflurane anesthesia with their awake state. Fractional Anisotropy, a white mater integrity index, transiently decreases throughout the brain during sevoflurane anesthesia and then returns back to baseline. Other DTI metrics such as mean diffusivity, axial diffusivity and radial diffusivity were increased under sevoflurane anesthesia. Although DTI metrics are age dependent, the transient changes due to sevoflurane were independent of age and sex. Volumetric analysis shows various white matter volumes decreased whereas some gray matter volumes increased during sevoflurane anesthesia. These results suggest that sevoflurane anesthesia has a significant, but transient, effect on white matter microstructure. In spite of the transient effects of sevoflurane anesthesia there were no measurable effects on brain white matter as determined by the DTI metrics at 2 days and 7 days following anesthesia. The role of white matter in the loss of consciousness under anesthesia will need to be studied and MRI studies with subjects under anesthesia will need to take these results into account.


Subject(s)
Anesthesia, General/adverse effects , Anesthetics, Inhalation/adverse effects , Brain/pathology , Postoperative Cognitive Complications/pathology , Sevoflurane/adverse effects , White Matter/pathology , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/drug effects , Brain Mapping , Case-Control Studies , Diffusion Tensor Imaging , Female , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Gray Matter/pathology , Humans , Male , Middle Aged , Neuroglia/drug effects , Neuroglia/pathology , Postoperative Cognitive Complications/chemically induced , Postoperative Cognitive Complications/diagnostic imaging , White Matter/diagnostic imaging , White Matter/drug effects
17.
Br J Anaesth ; 125(4): 529-538, 2020 10.
Article in English | MEDLINE | ID: mdl-32800503

ABSTRACT

BACKGROUND: A growing body of literature addresses the possible long-term cognitive effects of anaesthetics, but no study has delineated the normal trajectory of neural recovery attributable to anaesthesia alone in adults. We obtained resting-state functional MRI scans on 72 healthy human volunteers between ages 40 and 80 (median: 59) yr before, during, and after general anaesthesia with sevoflurane, in the absence of surgery, as part of a larger study on cognitive function postanaesthesia. METHODS: Region-of-interest analysis, independent component analysis, and seed-to-voxel analysis were used to characterise resting-state functional connectivity and to differentiate between correlated and anticorrelated connectivity before, during, and after general anaesthesia. RESULTS: Whilst positively correlated functional connectivity remained essentially unchanged across these perianaesthetic states, anticorrelated functional connectivity decreased globally by 35% 1 h after emergence from general anaesthesia compared with baseline, as seen by the region-of-interest analysis. This decrease corresponded to a consistent reduction in expression of canonical resting-state networks, as seen by independent component analysis. All measures returned to baseline 1 day later. CONCLUSIONS: The normal perianaesthesia trajectory of resting-state connectivity in healthy adults is characterised by a transient global reduction in anticorrelated activity shortly after emergence from anaesthesia that returns to baseline by the following day. CLINICAL TRIAL REGISTRATION: NCT02275026.


Subject(s)
Anesthesia Recovery Period , Anesthesia, General , Adult , Age Factors , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cognition Disorders/etiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Oxygen/blood , Sevoflurane/pharmacology
18.
J Comp Neurol ; 528(18): 3245-3261, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32720707

ABSTRACT

The African wild dog is endemic to sub-Saharan Africa and belongs to the family Canidae which includes domestic dogs and their closest relatives (i.e., wolves, coyotes, jackals, dingoes, and foxes). The African wild dog is known for its highly social behavior, co-ordinated pack predation, and striking vocal repertoire, but little is known about its brain and whether it differs in any significant way from that of other canids. We employed gross anatomical observation, magnetic resonance imaging, and classical neuroanatomical staining to provide a broad overview of the structure of the African wild dog brain. Our results reveal a mean brain mass of 154.08 g, with an encephalization quotient of 1.73, indicating that the African wild dog has a relatively large brain size. Analysis of the various structures that comprise their brains and their topological inter-relationships, as well as the areas and volumes of the corpus callosum, ventricular system, hippocampus, amygdala, cerebellum and the gyrification index, all reveal that the African wild dog brain is, in general, similar to that of other mammals, and very similar to that of other carnivorans. While at this level of analysis we do not find any striking specializations within the brain of the African wild dog, apart from a relatively large brain size, the observations made indicate that more detailed analyses of specific neural systems, particularly those involved in sensorimotor processing, sociality or cognition, may reveal features that are either unique to this species or shared among the Canidae to the exclusion of other Carnivora.


Subject(s)
Animals, Wild/anatomy & histology , Brain/anatomy & histology , Canidae/anatomy & histology , Africa South of the Sahara , Animals , Biological Evolution , Dogs , Magnetic Resonance Imaging , Phylogeny , Species Specificity
19.
J Comp Neurol ; 528(18): 3209-3228, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32592407

ABSTRACT

Over the last 15 years, research on canid cognition has revealed that domestic dogs possess a surprising array of complex sociocognitive skills pointing to the possibility that the domestication process might have uniquely altered their brains; however, we know very little about how evolutionary processes (natural or artificial) might have modified underlying neural structure to support species-specific behaviors. Evaluating the degree of cortical folding (i.e., gyrification) within canids may prove useful, as this parameter is linked to functional variation of the cerebral cortex. Using quantitative magnetic resonance imaging to investigate the impact of domestication on the canine cortical surface, we compared the gyrification index (GI) in 19 carnivore species, including six wild canid and 13 domestic dog individuals. We also explored correlations between global and local GI with brain mass, cortical thickness, white and gray matter volume and surface area. Our results indicated that GI values for domestic dogs are largely consistent with what would be expected for a canid of their given brain mass, although more variable than that observed in wild canids. We also found that GI in canids is positively correlated with cortical surface area, cortical thickness and total cortical gray matter volumes. While we found no evidence of global differences in GI between domestic and wild canids, certain regional differences in gyrification were observed.


Subject(s)
Canidae/anatomy & histology , Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Domestication , Gray Matter/anatomy & histology , Gray Matter/physiology , White Matter/anatomy & histology , White Matter/physiology , Animals , Animals, Wild/anatomy & histology , Animals, Wild/physiology , Biological Evolution , Brain Cortical Thickness , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cognition , Dogs , Gray Matter/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Species Specificity , White Matter/diagnostic imaging
20.
Neurotoxicology ; 78: 202-208, 2020 05.
Article in English | MEDLINE | ID: mdl-32217185

ABSTRACT

Welding fume exposure has been associated with structural brain changes and a wide variety of clinical and sub-clinical outcomes including cognitive, behavioral and motor abnormalities. Respirator use has been shown to decrease exposure to welding fumes; however, the associations between respirator use and health outcomes, particularly neurologic health, have been understudied. In this preliminary study, we used diffusion tensor imaging (DTI) to investigate the effectiveness of respirator use in protecting workers' white matter (WM) from the harmful effects related to welding fume exposure. Fractional anisotropy (FA), a common DTI measurement of water diffusion properties, was used as a marker of WM microstructure integrity. We hypothesized that FA in brain regions involved in motor and neurocognitive functions would differ between welders reporting respirator use compared to those not using a respirator. We enrolled a pilot cohort of 19 welders from labor unions in the New York City area. All welders completed questionnaires to assess welding history and occupational health. All completed a DTI acquisition on a 3 T Siemens scanner. Partial least squares discriminant analysis (PLS-DA), a bioinformatic analytical strategy, was used to model the divergence of WM microstructures in 48 regions defined by the ICBM-DTI-81 atlas between respirator users compared to non-users. This yielded an effective discrimination of respirator users from non-users, with the uncinate fasciculus, the cerebellar peduncle and the superior longitudinal fasciculus contributing most to the discrimination of these groups. These white matter tracts are involved in widespread motor and cognitive functions. To our knowledge, this study is the first to suggest a protective effect of respirator on WM microstructure, indicating that the lack of respirator may present unsafe working conditions for welders. These preliminary findings may inform a larger, longitudinal intervention study that would be more appropriate to investigate the potential protective effect of respirator usage on brain white matter in welders.


Subject(s)
Occupational Exposure/prevention & control , Respiratory Protective Devices , Welding , White Matter/drug effects , Adult , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Metal Workers , Middle Aged , Pilot Projects , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL