Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Cell Biol Int ; 48(9): 1378-1391, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38922770

ABSTRACT

Oxidative stress plays a pivotal role in the development of diabetic cardiomyopathy (DCM). Previous studies have revealed that inhibition of mitochondrial fission suppressed oxidative stress and alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. However, no research has confirmed whether mitochondria fission accentuates hyperglycemia-induced cardiomyoblast oxidative stress through regulating fatty acid oxidation (FAO). We used H9c2 cardiomyoblasts exposed to high glucose (HG) 33 mM to simulate DCM in vitro. Excessive mitochondrial fission, poor cell viability, and lipid accumulation were observed in hyperglycemia-induced H9c2 cardiomyoblasts. Also, the cells were led to oxidative stress injury, lower adenosine triphosphate (ATP) levels, and apoptosis. Dynamin-related protein 1 (Drp1) short interfering RNA (siRNA) decreased targeted marker expression, inhibited mitochondrial fragmentation and lipid accumulation, suppressed oxidative stress, reduced cardiomyoblast apoptosis, and improved cell viability and ATP levels in HG-exposed H9c2 cardiomyoblasts, but not in carnitine palmitoyltransferase 1 (CPT1) inhibitor etomoxir treatment cells. We also found subcellular localization of CPT1 on the mitochondrial membrane, FAO, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) were suppressed after exposure to HG treatment, whereas Drp1 siRNA normalized mitochondrial CPT1, FAO, and NADPH. However, the blockade of FAO with etomoxir abolished the above effects of Drp1 siRNA in hyperglycemia-induced H9c2 cardiomyoblasts. The preservation of mitochondrial function through the Drp1/CPT1/FAO pathway is the potential mechanism of inhibited mitochondria fission in attenuating oxidative stress injury of hyperglycemia-induced H9c2 cardiomyoblasts.


Subject(s)
Fatty Acids , Hyperglycemia , Mitochondrial Dynamics , Oxidation-Reduction , Oxidative Stress , Animals , Mitochondrial Dynamics/drug effects , Hyperglycemia/metabolism , Rats , Cell Line , Fatty Acids/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Dynamins/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitochondria/metabolism , Myoblasts, Cardiac/metabolism , Myoblasts, Cardiac/drug effects , Glucose/pharmacology , Adenosine Triphosphate/metabolism
2.
Front Cell Infect Microbiol ; 14: 1283737, 2024.
Article in English | MEDLINE | ID: mdl-38529471

ABSTRACT

Gallstones are crystalline deposits in the gallbladder that are traditionally classified as cholesterol, pigment, or mixed stones based on their composition. Microbiota and host metabolism variances among the different types of gallstones remain largely unclear. Here, the bile and gallstone microbial species spectra of 29 subjects with gallstone disease (GSD, 24 cholesterol and 5 pigment) were revealed by type IIB restriction site-associated DNA microbiome sequencing (2bRAD-M). Among them (21 subjects: 18 cholesterol and 3 pigment), plasma samples were subjected to liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics. The microbiome yielded 896 species comprising 882 bacteria, 13 fungi, and 1 archaeon. Microbial profiling revealed significant enrichment of Cutibacterium acnes and Microbacterium sp005774735 in gallstone and Agrobacterium pusense and Enterovirga sp013044135 in the bile of cholesterol GSD subjects. The metabolome revealed 2296 metabolites, in which malvidin 3-(6''-malonylglucoside), 2-Methylpropyl glucosinolate, and ergothioneine were markedly enriched in cholesterol GSD subjects. Metabolite set enrichment analysis (MSEA) demonstrated enriched bile acids biosynthesis in individuals with cholesterol GSD. Overall, the multi-omics analysis revealed that microbiota and host metabolism interaction perturbations differ depending on the disease type. Perturbed gallstone type-related microbiota may contribute to unbalanced bile acids metabolism in the gallbladder and host, representing a potential early diagnostic marker and therapeutic target for GSD.


Subject(s)
Gallstones , Humans , Gallstones/chemistry , Gallstones/metabolism , Gallstones/microbiology , Bile Acids and Salts/analysis , Bile/chemistry , Bile/metabolism , Cholesterol/metabolism
3.
Sci Total Environ ; 915: 169994, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38232823

ABSTRACT

Integrated rice-animal co-culture (IRAC) is an ecological agricultural system combining rice cultivation with animal farming, which holds significant implications for food security and agriculture sustainable development. However, the comprehensive impacts of the co-culture on rice yield, nitrogen (N) losses, and N fertilizer partial factor productivity (NPFP) remain elusive and may vary under different environmental conditions and N management. Here, we conducted a meta-analysis of data from various IRAC systems on a global scale, including 371, 298, and 115 sets of data for rice yield, NPFP, and N losses, respectively. The results showed that IRAC could significantly increase rice yield (by 3.47 %) and NPFP (by 4.26 %), and reduce N2O emissions (by 16.69 %), NH3 volatilization (by 11.03 %), N runoff (by 17.72 %), and N leaching (by 19.10 %). Furthermore, there were significant differences in rice yield, NPFP, and N loss among different IRAC systems, which may be ascribed to variations in regional climate, soil variables, and N fertilizer management practices. The effect sizes of rice yield and NPFP were notably correlated with the rate and frequency of N application and the soil clay content. Moreover, a higher amount of precipitation corresponded to a larger effect size on rice NPFP. N2O emissions were closely associated with mean annual air temperature, annual precipitation, N application frequency, soil pH level, soil organic matter content, soil clay content, and soil bulk density. However, NH3 volatilization, N runoff, and N leaching exhibited no correlation with either the environmental conditions or the N management. Multivariate regression analysis further demonstrated that the soil clay content and N application rate are pivotal in predicting the effect sizes of rice yield, NPFP, and N2O emissions under IRAC. Specifically, IRAC with a low N application rate in soils with a high clay content could augment the effect size to increase rice NPFP and yield and reduce N2O emissions. In conclusion, IRAC offers a potent strategy to optimize rice yield and NPFP as well as mitigate N losses.


Subject(s)
Nitrogen , Oryza , Animals , Nitrogen/analysis , Fertilizers/analysis , Clay , Coculture Techniques , Nitrous Oxide/analysis , Soil/chemistry , Agriculture/methods
4.
BMC Plant Biol ; 23(1): 244, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37158844

ABSTRACT

BACKGROUND: The growth of rice is reduced by the slow decomposition of accumulated straw, which competes with rice for soil nitrogen nutrient. In recent year, straw-decomposing inoculants (SDIs) that can accelerate straw decomposition and ammonium nitrogen (N) fertilizer that can quickly generate available N is increasingly adopted in China. However, it is still unknown whether the N demand of straw decomposition and crop growth can be simultaneously met through the co-application of SDIs and ammonium N fertilizer. RESULTS: In this study, we investigated the effect of the co-application of SDIs and ammonium bicarbonate on decomposition rate of wheat straw, rice growth and rice yield over two consecutive years in rice-wheat rotation system. Compound fertilizer (A0) was used as control. The ratios of ammonium bicarbonate addition were 20% (A2), 30% (A3) and 40% (A4), respectively, without SDIs or with SDIs (IA2, IA3, IA4). Our results revealed that without SDIs, compared with A0, straw decomposition rate, rice growth and yield were improved under A2; However, under A3, rice yield was decreased due to the slow decomposition rate of straw and limited growth of rice during late growth stage. Combining SDIs and N fertilizer increased straw decomposition rate, rice growth rate and yield more than that of N fertilizer alone, especially under IA3. Compared with A0, straw decomposition rate, tiller number, aboveground biomass, leaf area index, root length, and nitrogen use efficiency were significantly increased by 16%, 8%, 27%, 12%, 17%, and 15% under IA3. Consequently, the average rice yield of IA3 was increased to 10,856 kg/ha, which was 13% and 9% higher, respectively, than of A0 and A2. CONCLUSION: Our results indicated that ammonium bicarbonate application alone carried a risk of nutrient deficiency during late growth stage and yield decline. Therefore, the co-application of SDIs and 30% ammonium N fertilizer substitution can be a favorable practice to simultaneously accelerate straw decomposition and increase rice crop growth.


Subject(s)
Oryza , Fertilizers , Bicarbonates , Nitrogen
5.
Front Microbiol ; 14: 1131694, 2023.
Article in English | MEDLINE | ID: mdl-37032855

ABSTRACT

Gallstone disease (GSD) is associated with changes in the gut and gallbladder bacterial composition, but there is limited information on the role of the fungal community (mycobiome) in disease development. This study aimed to characterize the gallbladder mycobiome profiles and their interactions with bacteriome in GSD. A total of 136 bile and gallstone samples (34 paired for bacteriome, and 33 paired and extra 2 bile samples for mycobiome) were obtained from calculi patients with chronic cholecystitis. Bile and gallstone bacteriome and mycobiome were profiled by 16S and internal transcribed spacer (ITS) rRNA gene sequencing, respectively. Gallbladder bacteriome, mycobiome, and interkingdom and intrakingdom interactions were compared between bile and gallstone. In general, microbial diversity was higher in bile than in gallstone, and distinct microbial community structures were observed among them. Deep Sea Euryarchaeotic Group, Rhodobacteraceae, and Rhodobacterales were microbial biomarkers of bile, while Clostridiales and Eubacterium coprostanoligenes were biomarkers of gallstone. Five fungal taxa, including Colletotrichum, Colletotrichum sublineola, and Epicoccum, were enriched in gallstone. Further ecologic analyses revealed that intensive transkingdom correlations between fungi and bacteria and intrakingdom correlations within them observed in gallstone were significantly decreased in bile. Large and complex fungal communities inhabit the gallbladder of patients with GSD. Gallstone, compared with bile, is characterized by significantly altered bacterial taxonomic composition and strengthened bacterial-bacterial, fungal-fungal, and bacterial-fungal correlations in the gallbladder of patients with GSD.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122343, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36657285

ABSTRACT

Storage is necessary for rice to ensure the year-round consumption of rice. With the increase in storage time, the taste quality and commercial value of rice gradually decrease. The accurate determination of the freshness of rice is critical to the rice trade. However, it is difficult to distinguish aging rice from fresh rice, so a quick and simple method is needed to identify the freshness of the rice. In this study, a combination of near-infrared spectroscopy (NIR) and various algorithms, such as partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), and classification and regression trees (CART), were used to differentiate the freshness of rice. PLS-DA and SVM demonstrated excellent classification ability in identifying the freshness of rice, with sensitivity and specificity of 1. The original spectra were used with 100% accuracy in the test set to determine the freshness of the rice. As a result, PLS-DA and SVM can be used to determine the freshness of the rice.


Subject(s)
Oryza , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Oryza/chemistry , Discriminant Analysis , Algorithms , Least-Squares Analysis , Support Vector Machine
7.
Curr Res Food Sci ; 5: 1379-1385, 2022.
Article in English | MEDLINE | ID: mdl-36092020

ABSTRACT

With the continuous improvement of rice production capacity and the accumulation of reserves year by year, rice sometimes has to be stored for a long time. However, long-term storage of rice has poor sensory properties, which may be related to the structural changes of starch. Different from the previous studies on short-term storage of rice (often 3-12 months), the focus of this study was to understand the differences in starch multi-layer structure, pasting, and rice eating quality between 7 years stored rice and fresh rice. Our research indicated that 7 years stored rice showed higher hardness and lower stickiness compared to fresh rice, which ultimately led to poorer eating quality. These bad changes were related to differences in starch multi-layer structure. The 7 years stored rice had lower amylose content, a lower thickness of crystalline lamellae and short-range ordered structure of starch, and more large starch granules. In particular, the volume mean diameter of 7 years starch was more than 4 times that of fresh starch. 7 years stored rice had more large granular starch and unstable crystal structure, which led to the increase of pasting temperature and the decrease of gelatinization enthalpy during starch gelatinization, and ultimately reduced the eating quality of the rice.

9.
Plants (Basel) ; 9(3)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210167

ABSTRACT

This study aimed to improve nitrogen utilization and alleviate the inhibition of straw decomposition during early tillering and the growth of paddy after straw return. Specifically, three different nitrogen fertilizer (base fertilizer) application methods were tested under full straw return: applying the compound fertilizer once (J1), applying the compound fertilizer twice (J3) and applying the ammonium carbonate fertilizer plus compound fertilizer (J2). Full straw return without fertilizer (CK1) and no straw return without fertilizer (CK2) were used as the controls. The results showed that treatment with ammonium carbonate fertilizer combined with compound fertilizer (J2) significantly enhanced straw decomposition, light interception and dry matter accumulation at an early stage of tillering, but reduced tiller occurrence at a late tillering stage. Grain yield was affected due to reduced dry matter accumulation, nitrogen use efficiency and number of effective panicles. There were no significant differences in rice growth, nitrogen use efficiency and grain yield between the one-time or two-time compound fertilizer application methods. In contrast, treatment with ammonium carbonate fertilizer combined with compound fertilizer (J2) under full straw return effectively improved straw decomposition and accelerated the return of green and tillering. In addition, the proportion of ammonium carbonate fertilizer affected the nutrient utilization efficiency and yield at later stages.

10.
Sci Rep ; 9(1): 19708, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873163

ABSTRACT

Straw is one of the most abundant stock of renewable biomass from crop production. However, its utilization efficiency is still very low. Although co-cultivation of fungi increases the degrading rate, the co-cultivation condition needs to be optimized. To optimize the co-culture condition of Phanerochaete chrysosporium and Trichoderma viride degrading rice straw, we first tested the antagonistic characteristic between the fungi. The results showed that the best co-culture pattern was to first inoculate P. chrysosporium and culture for 4 days, then inoculate T. viride, and co-culture the two fungi for 4 days. The optimum fermentation condition was 14% (w/v) of inoculum concentration, the equivalent inoculation of the fungi, culture temperature at 30 °C, and 1:1.4 for solid-liquid ratio. Under the optimum condition, the degradation ratios of lignin and cellulose were 26.38% and 33.29%, respectively; the soluble carbon content in the culture product was 23.07% (w/v). The results would provide important reference information for the efficient utilization of rice straw to produce more accessible energy resources, such as ethanol and glucose.


Subject(s)
Oryza/chemistry , Phanerochaete/metabolism , Trichoderma/metabolism , Coculture Techniques , Fermentation , Temperature , Trichoderma/growth & development
11.
Int J Mol Sci ; 20(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357526

ABSTRACT

Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. Together, this study provides new insights into the regulatory mechanism of nitrogen fertilization in cereal crops.


Subject(s)
Fertilizers , Nitrogen/pharmacology , Oryza/drug effects , Oryza/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Proteome , Computational Biology/methods , Crops, Agricultural , Gene Expression Profiling , Gene Ontology , Nitrogen/metabolism , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Quantitative Trait, Heritable
12.
Aging (Albany NY) ; 11(14): 5215-5231, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31343413

ABSTRACT

Interstitial fibrosis and tubular atrophy (IFTA) with inflammation (IFTA-I) is strongly correlated with kidney allograft failure. Diagnosis of IFTA-I accurately and early is critical to prevent graft failure and improve graft survival. In the current study, through analyzing the renal allograft biopsy in patients with stable function after kidney transplantation (STA), IFTA and IFTA-I group with semi-supervised principal components methods, we found that CD2, IL7R, CCL5 based signature could not only distinguish STA and IFTA-I well, but predict IFTA-I with a high degree of accuracy with an area under the curve (AUC) of 0.91 (P = 0.00023). Additionally, IRF8 demonstrated significant differences among STA, IFTA and IFTA-I groups, suggesting that IRF8 had the capacity to discriminate the different classifications of graft biopsies well. Also, with Kaplan-Meier and log-rank methods, we found that IRF8 could serve as the prognostic marker for renal graft failure in those biopsies without rejection (AUC = 0.75) and the recipients expressing high had a higher risk for renal graft loss (P < 0.0001). This research may provide new targets for therapeutic prevention and intervention for post-transplantation IFTA with or with inflammation.


Subject(s)
Kidney Transplantation/adverse effects , Kidney Tubules/pathology , Kidney/pathology , Nephritis, Interstitial/diagnosis , RNA, Messenger/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Area Under Curve , Atrophy/pathology , Biomarkers , Biopsy , Chemokine CCL5/genetics , Cytoskeletal Proteins/genetics , Female , Fibrosis/diagnosis , Gene Expression Profiling , Graft Rejection/prevention & control , Humans , Interferon Regulatory Factors/genetics , Interleukin-7 Receptor alpha Subunit/genetics , Kaplan-Meier Estimate , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL