Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomater Adv ; 154: 213650, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857084

ABSTRACT

The treatment of breast cancer relies heavily on chemotherapy, but chemotherapy is limited by the disadvantages of poor targeting, susceptibility to extracellular matrix (ECM) interference and a short duration of action in tumor cells. To address these limitations, we developed an amphipathic peptide containing an RGD motif, Pep1, that encapsulated paclitaxel (PTX) and losartan potassium (LP) to form the drug-loaded peptide PL/Pep1. PL/Pep1 self-assembled into spherical nanoparticles (NPs) under normal physiological conditions and transformed into aggregates containing short nanofibers at acidic pH. The RGD peptide facilitated tumor targeting and the aggregates prolonged drug retention in the tumor, which allowed more drug to reach and accumulate in the tumor tissue to promote apoptosis and remodel the tumor microenvironment. The results of in vitro and in vivo experiments confirmed the superiority of PL/Pep1 in terms of targeting, prolonged retention and facilitated penetration for antitumor therapy. In conclusion, amphipathic peptides as coloaded drug carriers are a new platform and strategy for breast cancer chemotherapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Paclitaxel/therapeutic use , Paclitaxel/pharmacology , Peptides/therapeutic use , Drug Carriers , Tumor Microenvironment
2.
J Pain Res ; 12: 2145-2153, 2019.
Article in English | MEDLINE | ID: mdl-31372032

ABSTRACT

Background: Aggrecan plays a crucial role in the ability of tissues to withstand compressive loads during the pathological progression of osteoarthritis (OA). Progressive loss of aggrecan from cartilage may result in exposure of the collagen matrix and can lead to its disintegration by metalloproteases. Although aggrecanases are expressed constitutively in human chondrocytes, the degradation of aggrecan is induced by proinflammatory cytokines; however, little is known about the underlying mechanisms. Methods: Human primary chondrocytes from OA patients or healthy donors and human chondrogenic SW1353 cells were cultured and stimulated with IL-1ß in vitro, the mRNA expressions and protein levels of MMP-13, ADAMTS-4, ADAMTS-5, SENP1, and SENP2 were determined using real time PCR and Western blot, respectively. The localizations of aggrecan and Col-II, as well as the SUMOylation modification of these proteins were analyzed using immunofluorescence and immunoprecipitation assays, respectively. Results: Our results showed that a proinflammatory cytokine interleukin-1ß induced the OA model and desumoylation of aggrecan and collagen type II because the small ubiquitin-like modifier 2/3 (SUMO2/3) was co-localized with aggrecan and collagen type II proteins and interacted physically with them. Mechanistic studies have shown that knockdown of SUMO2/3 expression can significantly enhance the rate of degradation of aggrecan and collagen type II at both the mRNA and protein levels in the OA model. In addition, SUMO-specific protease 2 (SENP2) plays important roles in the desumoylation of aggrecan, while knockdown of SENP2 can protect aggrecan and collagen type II. Clinical assays have shown that OA patients have higher SENP2 levels than healthy controls, and the SENP2 level correlates negatively with both aggrecan and collagen type II levels. Conclusion: SENP2 desumoylates aggrecan and collagen type II proteins in the inflammation induced OA, and SENP2 expression correlates with OA progression.

3.
Hematology ; 22(4): 208-216, 2017 May.
Article in English | MEDLINE | ID: mdl-27875938

ABSTRACT

OBJECTIVES: Imatinib, a breakpoint cluster region-Abelson murine leukemia tyrosine kinase inhibitor, has revolutionized the treatment of chronic myelogenous leukemia (CML). However, the development of multidrug resistance (MDR) limits the clinical application of imatinib. In this study, we aimed to investigate the mechanisms of long noncoding RNA (lncRNA) HOTAIR in CML resistance to imatinib. METHODS: Thirty-four CML patients were divided into multidrug resistance protein 1 (MRP1)-low and MRP1-high groups according to the median expression. Real-time PCR (qPCR) was used to detect the expression of lncRNA HOTAIR in CML patients, and MTT assay and flow cytometry assay were employed to detect the biological function of silencing lncRNA HOTAIR on the cell survival rate and apoptotic rate. An imatinib-resistant human CML cell line K562 (K562-R) was established, and western blot was used to detect the impact of lncRNA HOTAIR on the activation of PI3K/Akt signaling pathway. RESULTS: Our results showed that lncRNA HOTAIR was greatly upregulated in the MRP1-high patients as well as in the K562-imatinib-resistant cells compared with control. Knockdown of HOTAIR expression downregulated the MRP1 expression levels in the K562-imatinib cells and resulted in higher sensitivity to the imatinib treatment. In addition, the activation of PI3K/Akt was greatly attenuated when HOTAIR was knocked down in K562-imatinib cells. DISCUSSIONS: These data suggest that the knockdown of HOTAIR may play a crucial role in improving acquired resistance to imatinib in CML K562-R cells via PI3K/Akt pathway. CONCLUSIONS: LncRNA HOTAIR modulates CML cell MDR in a PI3K/Akt-dependent way.


Subject(s)
Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Drug Resistance, Multiple , Female , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Male , Middle Aged , Multidrug Resistance-Associated Proteins/biosynthesis , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/biosynthesis , Young Adult
4.
Cell Stress Chaperones ; 20(5): 781-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26045200

ABSTRACT

Cytokines such as tumor necrosis factor alpha (TNF-α)-induced expression of matrix metalloproteinase (MMP) play a pivotal role in the destruction of articular cartilage in patients who are suffering from osteoarthritis (OA). Collagen type II, the basis for articular cartilage, can be degraded by MMP-1, MMP-3, and 13. EGb761, the standardized extract of Ginkgo biloba produced by Dr. Willar Schwabe Pharmaceuticals, has shown its anti-inflammatory capacity. This study aimed to determine a mechanism whereby EGb761 may inhibit cartilage degradation. Our results indicated that pretreatment with EGb761 abolishes MMP-1, MMP-3, and MMP-13 gene expression and protein expression induced by TNF-α in human chondrocyte monolayer. In addition, the reduction of the tissue inhibitor of metalloproteinase-1(TIMP-1) and metalloproteinase-2 gene expression induced by TNF-α was rescued by pretreatment with EGb761. Importantly, TNF-α-induced degradation of collagen type II was ameliorated by EGb761 in a dose-dependent manner. Mechanistically, our results indicated that EGb761 treatment attenuated TNF-α-induced NF-κB activation. These actions of EGb761 suggest a mechanism by which EGb761 may act to prevent cartilage breakdown in arthritis.


Subject(s)
Chondrocytes/enzymology , Matrix Metalloproteinase 13/biosynthesis , Matrix Metalloproteinase 1/biosynthesis , Matrix Metalloproteinase 3/biosynthesis , Matrix Metalloproteinase Inhibitors/pharmacology , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cells, Cultured , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Ginkgo biloba , Humans , Matrilin Proteins/physiology , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...