Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Biochem ; 80(2): 393-405, 2024 May.
Article in English | MEDLINE | ID: mdl-38427168

ABSTRACT

Corticosterone (CORT) damages hippocampal neurons as well as induces neuroinflammation. The tricarboxylic acid cycle metabolite itaconate has an anti-inflammatory role. Necroptosis is a form of programmed cell death, also known as inflammatory cell death. Menin is a multifunctional scaffold protein, which deficiency aggravates neuroinflammation. In this study, we explored whether itaconate inhibits CORT-induced neuroinflammation as well as necroptosis and further investigated the mediatory role of Menin in this protective effect of itaconate by using an exposure of CORT to HT22 cells (a hippocampal neuronal cell line). The viability of HT22 cells was examined by the cell counting kit 8 (CCK-8). The morphology of HT22 cells was observed by transmission electron microscope (TEM). The expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) were evaluated by western blotting. The contents of inflammatory factors were detected by an enzyme-linked immunosorbent assay (ELISA) kit. Our results showed that CORT increases the contents of pro-inflammatory factors (IL-1ß, TNF-α) as well as decreases the contents of anti-inflammatory factors (IL-4, IL-10) in HT22 cells. We also found that CORT increases the expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) and decreases the cell viability in HT22 cells, indicating that CORT induces necroptosis in HT22 cells. Itaconate improves CORT-induced neuroinflammation and necroptosis. Furthermore, itaconate upregulates the expression of Menin in CORT-exposed HT22 cells. Importantly, silencing Menin abolishes the antagonistic effect of itaconate on CORT-induced necroptosis and neuroinflammation. In brief, these results indicated that itaconate protects HT22 cells against CORT-induced neuroinflammation and necroptosis via upregulating Menin.


Subject(s)
Corticosterone , Necroptosis , Proto-Oncogene Proteins , Up-Regulation , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Survival/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Necroptosis/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Succinates/pharmacology , Up-Regulation/drug effects
2.
Biomater Sci ; 12(5): 1281-1293, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38252410

ABSTRACT

Acute liver injury (ALI) is a highly fatal condition characterized by sudden massive necrosis of liver cells, inflammation, and impaired coagulation function. Currently, the primary clinical approach for managing ALI involves symptom management based on the underlying causes. The association between excessive reactive oxygen species originating from macrophages and acute liver injury is noteworthy. Therefore, we designed a novel nanoscale phase variant contrast agent, denoted as PFP@CeO2@Lips, which effectively scavenges reactive oxygen species, and enables visualization through low intensity pulsed ultrasound activation. The efficacy of the nanoparticles in scavenging excess reactive oxygen species from RAW264.7 and protective AML12 cells has been demonstrated through in vitro and in vivo experiments. Additionally, these nanoparticles have shown a protective effect against LPS/D-GalN attack in C57BL/6J mice. Furthermore, when exposed to LIPUS irritation, the nanoparticles undergo liquid-gas phase transition and enable ultrasound imaging.


Subject(s)
Liver , Nanoparticles , Mice , Animals , Reactive Oxygen Species , Mice, Inbred C57BL , Liver/diagnostic imaging , Inflammation , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL