Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(5): 659-674, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38190710

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process frequently hijacked by cancer cells to promote tumor progression, especially metastasis. EMT is orchestrated by a complex molecular network acting at different layers of gene regulation. In addition to transcriptional regulation, posttranscriptional mechanisms may also play a role in EMT. Here, we performed a pooled CRISPR screen analyzing the influence of 1,547 RNA-binding proteins on cell motility in colon cancer cells and identified multiple core components of P-bodies (PB) as negative modulators of cancer cell migration. Further experiments demonstrated that PB depletion by silencing DDX6 or EDC4 could activate hallmarks of EMT thereby enhancing cell migration in vitro as well as metastasis formation in vivo. Integrative multiomics analysis revealed that PBs could repress the translation of the EMT driver gene HMGA2, which contributed to PB-meditated regulation of EMT. This mechanism is conserved in other cancer types. Furthermore, endoplasmic reticulum stress was an intrinsic signal that induced PB disassembly and translational derepression of HMGA2. Taken together, this study has identified a function of PBs in the regulation of EMT in cancer. SIGNIFICANCE: Systematic investigation of the influence of posttranscriptional regulation on cancer cell motility established a connection between P-body-mediated translational control and EMT, which could be therapeutically exploited to attenuate metastasis formation.


Subject(s)
Colonic Neoplasms , Processing Bodies , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Early Detection of Cancer , Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/genetics , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor , Proteins/genetics
2.
Nat Commun ; 14(1): 8170, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071219

ABSTRACT

Human cancer cell lines have long served as tools for cancer research and drug discovery, but the presence and the source of intra-cell-line heterogeneity remain elusive. Here, we perform single-cell RNA-sequencing and ATAC-sequencing on 42 and 39 human cell lines, respectively, to illustrate both transcriptomic and epigenetic heterogeneity within individual cell lines. Our data reveal that transcriptomic heterogeneity is frequently observed in cancer cell lines of different tissue origins, often driven by multiple common transcriptional programs. Copy number variation, as well as epigenetic variation and extrachromosomal DNA distribution all contribute to the detected intra-cell-line heterogeneity. Using hypoxia treatment as an example, we demonstrate that transcriptomic heterogeneity could be reshaped by environmental stress. Overall, our study performs single-cell multi-omics of commonly used human cancer cell lines and offers mechanistic insights into the intra-cell-line heterogeneity and its dynamics, which would serve as an important resource for future cancer cell line-based studies.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Multiomics , Cell Line, Tumor , Epigenomics , Transcriptome , Neoplasms/genetics
3.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743028

ABSTRACT

The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated an Nsun6-KO mouse strain, which exhibited no apparent phenotype in both the development and adult stages as compared to wild-type mice. Taking advantage of this mouse strain, we identified 80 high-confident Nsun6-dependent m5C sites by mRNA bisulfite sequencing in five different tissues and systematically analyzed the transcriptomic phenotypes of Nsun6-KO tissues by mRNA sequencing. Our data indicated that Nsun6 is not required for the homeostasis of these organs under laboratory housing conditions, but its loss may affect immune response in the spleen and oxidoreductive reaction in the liver under certain conditions. Additionally, we further investigated T-cell-dependent B cell activation in KO mice and found that Nsun6 is not essential for the germinal center B cell formation but is associated with the formation of antibody-secreting plasma cells. Finally, we found that Nsun6-mediated m5C modification does not have any evident influence on the stability of Nsun6 target mRNAs, suggesting that Nsun6-KO-induced phenotypes may be associated with other functions of the m5C modification or Nsun6 protein.


Subject(s)
5-Methylcytosine , 5-Methylcytosine/metabolism , Animals , Gene Knockout Techniques , Methylation , Mice , Mice, Knockout , RNA, Messenger/genetics
4.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-34969779

ABSTRACT

Alternative splicing is ubiquitous, but the mechanisms underlying its pattern of evolutionary divergence across mammalian tissues are still underexplored. Here, we investigated the cis-regulatory divergences and their relationship with tissue-dependent trans-regulation in multiple tissues of an F1 hybrid between two mouse species. Large splicing changes between tissues are highly conserved and likely reflect functional tissue-dependent regulation. In particular, micro-exons frequently exhibit this pattern with high inclusion levels in the brain. Cis-divergence of splicing appears to be largely non-adaptive. Although divergence is in general associated with higher densities of sequence variants in regulatory regions, events with high usage of the dominant isoform apparently tolerate more mutations, explaining why their exon sequences are highly conserved but their intronic splicing site flanking regions are not. Moreover, we demonstrate that non-adaptive mutations are often masked in tissues where accurate splicing likely is more important, and experimentally attribute such buffering effect to trans-regulatory splicing efficiency.


Subject(s)
Alternative Splicing/genetics , Evolution, Molecular , Genetic Drift , Animals , Databases, Genetic , Exons/genetics , Female , Humans , Male , Mice , Phenotype , RNA, Messenger/genetics , RNA-Seq , Regulatory Sequences, Nucleic Acid/genetics
5.
Mol Syst Biol ; 16(11): e10025, 2020 11.
Article in English | MEDLINE | ID: mdl-33251765

ABSTRACT

Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6 A and m5 C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high-throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR-seq). Using CIGAR-seq, we discovered NSUN6 as a novel mRNA m5 C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non-overlapping subsets of mRNA m5 C sites and together contributed to almost all the m5 C modification in mRNA. Finally, using m1 A as an example, we demonstrated that CIGAR-seq can be easily adapted for identifying regulators of other mRNA modification.


Subject(s)
CRISPR-Cas Systems/genetics , Methyltransferases/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Expression Regulation , Gene Regulatory Networks , Genetic Vectors/genetics , HEK293 Cells , Humans , Methylation , Methyltransferases/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/analysis , tRNA Methyltransferases/genetics
6.
Oncogene ; 39(28): 5152-5164, 2020 07.
Article in English | MEDLINE | ID: mdl-32535615

ABSTRACT

Epithelial-mesenchymal transition (EMT) program, which facilitates tumor metastasis, stemness and therapy resistance, is a reversible biological process that is largely orchestrated at the epigenetic level under the regulation of different cell signaling pathways. EMT state is often heterogeneous within individual tumors, though the epigenetic drivers underlying such heterogeneity remain elusive. In colon cancer, hyperactivation of the Wnt/ß-catenin signaling not only drives tumor initiation, but also promotes metastasis in late stage by promoting EMT program. However, it is unknown whether the intratumorally heterogeneous Wnt activity could directly drive EMT heterogeneity, and, if so, what are the underlying epigenetic driver(s). Here, by analyzing a phenotypically and molecularly heterogeneous colon cancer cell line using single-cell RNA sequencing, we identified two distinct cell populations with positively correlated Wnt activity and EMT state. Integrative multi-omics analysis of these two cell populations revealed RUNX2 as a critical transcription factor epigenetically driving the EMT heterogeneity. Both in vitro and in vivo genetic perturbation assays validated the EMT-enhancing effect of RUNX2, which remodeled chromatin landscape and activated a panel of EMT-associated genes through binding to their promoters and/or potential enhancers. Finally, by exploring the clinical data, we showed that RUNX2 expression is positively correlated with metastasis development and poor survival of colon cancer patients, as well as patients afflicted with other types of cancer. Taken together, our work revealed RUNX2 as a new EMT-promoting epigenetic regulator in colon cancer, which may potentially serve as a prognostic marker for tumor metastasis.


Subject(s)
Colonic Neoplasms/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Epigenomics/methods , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling/methods , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Animals , Caco-2 Cells , Cell Line, Tumor , Colonic Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , HeLa Cells , Heterografts , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...