Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 17: 2309-2326, 2024.
Article in English | MEDLINE | ID: mdl-38638161

ABSTRACT

Background: Allergic rhinitis (AR) is globally recognized as a considerable threat to human health with a rising prevalence and a substantial medical and socioeconomic burden. Numerous studies have emphasized the significance of long noncoding RNAs (lncRNAs) in allergic responses. Hence, this research dealt with exploring the involvement of the lncRNA LINC00998 in the mechanism of AR. Methods: LINC00998 expression was assessed by qRT-PCR in peripheral blood mononuclear cells acquired from individuals with AR. Additionally, the potential relationship between LINC00998 and macrophage polarization was observed in vitro. Then we constructed AR mice model and macrophage polarization models using THP-1 cells as well as primary human macrophages to verify the M2 shift in AR and the low expression level of LINC00998 in M2 macrophages. We used gain- and loss-of-function experiments to explore the modification of LINC00998 in macrophage polarization. Furthermore, we explored the underlying mechanism of LINC00998 mediates through qRT-PCR, flow cytometry, and Western blot. Results: The analysis revealed a significant decrease in LINC00998 expression in the samples obtained from patients with AR. LINC00998 is markedly increased in M1 macrophages whereas decreased in M2 macrophages in vitro. Furthermore, suppression of LINC00998 caused a remarkable enhancement in M2 polarization, whereas its overexpression led to its attenuation. Knockdown of LINC00998 led to a remarkable downregulation of BOB.1 mRNA and protein, while overexpression of LINC00998 upregulated their expression. Moreover, it was found that BOB.1 modulated macrophage polarization through the PU.1/IL-1ß axis. Meanwhile, the modulation of LINC00098 overexpression on macrophage polarization and PU.1/ IL-1ß can be reversed by BOB.1 siRNA. Conclusion: This research revealed the lncRNA LINC00998 altered M2 macrophage polarization by regulating the BOB.1/PU.1/IL-1ß axis, which open up new avenues for studying the pathogenesis of AR.

2.
Inflammation ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294580

ABSTRACT

Allergic rhinitis (AR) is an allergic condition of the upper respiratory tract with a complex pathogenesis, including epithelial barrier disruption, immune regulation, and gut microbiota, which is not yet fully understood. Gut microbiota is closely linked to allergic diseases, including AR. Fecal microbiota transplantation (FMT) has recently been recognized as a potentially effective therapy for allergic diseases. However, the efficacy and mechanism of action of FMT in AR remain unknown. Herein, we aimed to observe the implications of gut microbiota on epithelial barrier function and T cell homeostasis, as well as the effect of FMT in AR, using the ovalbumin (OVA)-induced AR mice. The intestinal microbiota of recipient mice was cleared using an antibiotic cocktail; thereafter, FMT was performed. Subsequently, the nasal symptom scores and histopathological features of colon and nasal mucosa tissues of mice were monitored, and serum OVA-sIgE and cytokines of IL-4, IFNγ, IL-17A, and IL-10 cytokine concentrations were examined. Thereafter, tight junction protein and CD4+ T cell-related transcription factor and cytokine expressions were observed in the colon and nasal mucosa, and changes in the expression of PI3K/AKT/mTOR and NFκB signaling pathway were detected by WB assay in each group. Fecal DNA was extracted from the four mice groups for high-throughput 16S rRNA sequencing. FMT ameliorated nasal symptoms and reduced nasal mucosal inflammation in AR mice. Moreover, according to 16S rRNA sequencing, FMT restored the disordered gut microbiota in AR mice. Following FMT, ZO-1 and claudin-1 and Th1/Th2/Th17-related transcription factor and cytokine expressions were upregulated, whereas Treg cell-related Foxp3 and IL-10 expressions were downregulated. Mechanistic studies have revealed that FMT also inhibited PI3K/AKT/mTOR and NF-κB pathway protein phosphorylation in AR mouse tissues. FMT alleviates allergic inflammation in AR by repairing the epithelial barrier and modulating CD4+ T cell balance and exerts anti-inflammatory effects through the PI3K/AKT/mTOR and NF-κB signaling pathways. Moreover, gut microbiota disorders are involved in AR pathogenesis. Disturbed gut microbiota causes an altered immune-inflammatory state in mice and increases susceptibility to AR. This study suggested the regulatory role of the gut-nose axis in the pathogenesis of AR is an emerging field, which provides novel directions and ideas for the treatment of AR.

3.
Front Immunol ; 14: 1168920, 2023.
Article in English | MEDLINE | ID: mdl-37205104

ABSTRACT

Although M2 macrophages are involved in the orchestration of type 2 inflammation in allergic diseases, the mechanisms underlying non-coding RNA (ncRNA)-mediated macrophage polarization in allergic rhinitis (AR) have not been systematically understood. Here, we identified long non-coding RNA (lncRNA) MIR222HG as a key regulator of macrophage polarization and revealed its role in AR. Consistent with our bioinformatic analysis of GSE165934 dataset derived from the Gene Expression Omnibus (GEO) database, lncRNA-MIR222HG and murine mir222hg were downregulated in our clinical samples and animal models of AR, respectively. Mir222hg was upregulated in M1 macrophages and downregulated in M2 macrophages. The allergen-ovalbumin facilitated polarization of RAW264.7 cells to the M2 phenotype, accompanied by the downregulation of mir222hg expression in a dose-dependent manner. Mir222hg facilitates macrophage M1 polarization and reverses M2 polarization caused by ovalbumin. Furthermore, mir222hg attenuates macrophage M2 polarization and allergic inflammation in the AR mouse model. Mechanistically, a series of gain- and loss-of-function experiments and rescue experiments were performed to verify the role of mir222hg as a ceRNA sponge that adsorbed miR146a-5p, upregulated Traf6, and activated the IKK/IκB/P65 pathway. Collectively, the data highlight the remarkable role of MIR222HG in the modulation of macrophage polarization and allergic inflammation, as well as its potential role as a novel AR biomarker or therapeutic target.


Subject(s)
Macrophages , RNA, Long Noncoding , Rhinitis, Allergic , Animals , Mice , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Ovalbumin/metabolism , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , RNA, Long Noncoding/genetics , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , RAW 264.7 Cells
4.
Int Immunopharmacol ; 115: 109681, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634416

ABSTRACT

BACKGROUND: Prostaglandins (PGs) are bioactive lipid mediators derived from the nuclear and plasma membranes via the cyclooxygenase (COX) pathway of arachidonic acid (AA) metabolism. PGs bridge the interactions between various immunomodulatory cells in allergic rhinitis (AR) and are considered key players in regulating pro-inflammatory and anti-inflammatory responses. AA conversion to PGs involves rate-limiting enzymes that may be blocked by statins. The mechanisms by which statins regulate these enzymes in AR remain unclear. We investigated the effects of oral atorvastatin on PGs production in AR. METHODS: An ovalbumin-induced AR rat model was constructed and the changes in nasal symptom score and nasal mucosa histopathological characteristics of AR rats under different atorvastatin doses were assessed. qRT-PCR, western blotting, and immunofluorescence were used to detect the mRNA and protein expression levels of rate-limiting enzymes and downstream molecules of AA metabolism in the nasal mucosa and liver. RESULTS: Oral atorvastatin significantly alleviated symptoms and eosinophil infiltration in the nasal mucosa, inhibited goblet cell hyperplasia and mast cell recruitment, and decreased mucus secretion in AR rats. Increasing atorvastatin dose increased the anti-inflammatory effects. High-dose atorvastatin inhibited upregulation of the inflammatory mediator PGD2 in the nasal mucosa of AR rats. Compared to the control group, the mRNA and protein expression of the rate-limiting enzymes COX-2, PGDS, and PGES in AA metabolism in the AR group were upregulated but downregulated after the oral administration of high-dose atorvastatin. Atorvastatin also showed dose-dependent inhibition of ERK1/2 and downstream NF-κB phosphorylation in the nasal mucosa and liver of AR rats. CONCLUSIONS: Atorvastatin inhibited allergic inflammation and attenuated AR nasal symptoms by downregulating PGD2 and rate-limiting enzyme expression in PGD2 biosynthesis, possibly by blocking the RAS/ERK/NF-κB signaling pathway.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rhinitis, Allergic , Rats , Animals , Mice , Atorvastatin/therapeutic use , Atorvastatin/pharmacology , NF-kappa B/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Rhinitis, Allergic/pathology , Nasal Mucosa/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Prostaglandins/metabolism , Ovalbumin/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Cytokines/metabolism
5.
Environ Int ; 154: 106576, 2021 09.
Article in English | MEDLINE | ID: mdl-33901976

ABSTRACT

BACKGROUND: Long-term surface NO2 data are essential for retrospective policy evaluation and chronic human exposure assessment. In the absence of NO2 observations for Mainland China before 2013, training a model with 2013-2018 data to make predictions for 2005-2012 (back-extrapolation) could cause substantial estimation bias due to concept drift. OBJECTIVE: This study aims to correct the estimation bias in order to reconstruct the spatiotemporal distribution of daily surface NO2 levels across China during 2005-2018. METHODS: On the basis of ground- and satellite-based data, we proposed the robust back-extrapolation with a random forest (RBE-RF) to simulate the surface NO2 through intermediate modeling of the scaling factors. For comparison purposes, we also employed a random forest (Base-RF), as a representative of the commonly used approach, to directly model the surface NO2 levels. RESULTS: The validation against Taiwan's NO2 observations during 2005-2012 showed that RBE-RF adequately corrected the substantial underestimation by Base-RF. The RMSE decreased from 10.1 to 8.2 µg/m3, 7.1 to 4.3 µg/m3, and 6.1 to 2.9 µg/m3 in predicting daily, monthly, and annual levels, respectively. For North China with the most severe pollution, the population-weighted NO2 ([NO2]pw) during 2005-2012 was estimated as 40.2 and 50.9 µg/m3 by Base-RF and RBE-RF, respectively, i.e., 21.0% difference. While both models predicted that the national annual [NO2]pw increased during 2005-2011 and then decreased, the interannual trends were underestimated by >50.2% by Base-RF relative to RBE-RF. During 2005-2018, the nationwide population that lived in the areas with NO2 > 40 µg/m3 were estimated as 259 and 460 million by Base-RF and RBE-RF, respectively. CONCLUSION: With RBE-RF, we corrected the estimation bias in back-extrapolation and obtained a full-coverage dataset of daily surface NO2 across China during 2005-2018, which is valuable for environmental management and epidemiological research.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...