Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
J Inflamm Res ; 17: 3617-3628, 2024.
Article in English | MEDLINE | ID: mdl-38855168

ABSTRACT

Objective: There are no studies examining the role of the neutrophil-to-lymphocyte ratio (NLR), the C-reactive protein-to-albumin ratio (CAR), the systemic inflammatory index (SII), and the systemic inflammatory response index (SIRI) in anti-synthetase syndrome (ASS). We aim to compare NLR, CAR, SII, and SIRI in ASS and dermatomyositis/polymyositis (DM/PM), as well as to examine potential correlations between NLR, CAR, SII, and SIRI and clinical features and laboratory parameters in ASS. Methods: Retrospective collection of data from 111 patients with ASS and 175 patients with DM/PM. A Spearman rank correlation analysis was utilized to analyze the correlation between NLR, CAR, SII, and SIRI and inflammatory indexes. Receiver operating characteristic (ROC) curves were used to assess the diagnostic value. Univariate logistic regression analysis was performed to assess risk factors for interstitial lung disease (ILD). Results: Compared with DM/PM, NLR, CAR, SII, and SIRI were significantly greater in ASS patients (p < 0.05). NLR, CAR, SII, and SIRI were correlated with albumin, lactic dehydrogenase (LDH), C-reactive protein (CRP), ferritin, white blood cell (WBC), platelets, and myositis disease activity assessment visual analog scales (MYOACT) score (p < 0.05). The ROC curves analysis showed that NLR, SII, and SIRI were all highly predictive of the occurrence of ASS. Comparisons based on clinical characteristics showed elevated levels of NLR, CAR, SII, and SIRI in ASS patients with ILD, fever, and infection (p < 0.05). Univariate logistic regression analysis revealed that NLR, CAR, and SII were significant risk factors for ASS-ILD (p < 0.05). Conclusion: The levels of NLR, CAR, SII, and SIRI were higher in ASS than in DM/PM and correlated with disease activity and specific clinical features. NLR, CAR, SII, and SIRI may be an aid in differentiating ASS from DM/PM and maybe promising biomarkers for ASS.

3.
PeerJ ; 12: e17414, 2024.
Article in English | MEDLINE | ID: mdl-38784400

ABSTRACT

Background: Sepsis-induced myocardial injury, as one of the important complications of sepsis, can significantly increase the mortality of septic patients. Our previous study found that nucleolin affected mitochondrial function in energy synthesis and had a protective effect on septic cardiomyopathy in mice. During sepsis, glucose metabolism disorders aggravated myocardial injury and had a negative effect on septic patients. Objectives: We investigated whether nucleolin could regulate glucose metabolism during endotoxemia-induced myocardial injury. Methods: The study tested whether the nucleolin cardiac-specific knockout in the mice could affect glucose metabolism through untargeted metabolomics, and the results of metabolomics were verified experimentally in H9C2 cells. The ATP content, lactate production, and oxygen consumption rate (OCR) were evaluated. Results: The metabolomics results suggested that glycolytic products were increased in endotoxemia-induced myocardial injury, and that nucleolin myocardial-specific knockout altered oxidative phosphorylation-related pathways. The experiment data showed that TNF-α combined with LPS stimulation could increase the lactate content and the OCR values by about 25%, and decrease the ATP content by about 25%. However, interference with nucleolin expression could further decrease ATP content and OCR values by about 10-20% and partially increase the lactate level in the presence of TNF-α and LPS. However, nucleolin overexpression had the opposite protective effect, which partially reversed the decrease in ATP content and the increase in lactate level. Conclusion: Down-regulation of nucleolin can exacerbate glucose metabolism disorders in endotoxemia-induced myocardial injury. Improving glucose metabolism by regulating nucleolin was expected to provide new therapeutic ideas for patients with septic cardiomyopathy.


Subject(s)
Endotoxemia , Glucose , Nucleolin , Phosphoproteins , RNA-Binding Proteins , Animals , Mice , Adenosine Triphosphate/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/etiology , Cell Line , Endotoxemia/metabolism , Glucose/metabolism , Lipopolysaccharides , Metabolomics , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Oxidative Phosphorylation , Oxygen Consumption , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics
4.
Biomacromolecules ; 25(6): 3671-3684, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38720431

ABSTRACT

Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.


Subject(s)
Hyaluronic Acid , Metal-Organic Frameworks , Porphyrins , Wound Healing , Wound Healing/drug effects , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Mice , Reactive Oxygen Species/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Skin/drug effects , Humans , Wound Infection/drug therapy , Wound Infection/microbiology , Iron/chemistry , Photochemotherapy/methods , Hyaluronoglucosaminidase
5.
Sci Rep ; 14(1): 9550, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664461

ABSTRACT

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Replication Protein A/metabolism , Replication Protein A/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
6.
Adv Mater ; : e2401315, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627335

ABSTRACT

The integration of advanced functions and diverse practical applications calls for multifunctional liquid crystal elastomers (LCEs); however, the structure-intrinsic luminescence and excellent mechanical properties of LCEs have not yet been explored. In this study, clusteroluminescence (CL)-based LCEs (CL-LCEs) are successfully fabricated without depending on large conjugated structures, thereby avoiding redundant organic synthesis and aggregation-caused quenching. The experimental and theoretical results reveal that secondary amine (-NH-) and imine (-C = N-) groups play vital roles in determining the presence of fluorescence in CL-LCEs. Based on the above observation, the strategy universalization and a molecular library for constructing CL-LCEs are further demonstrated. Meanwhile, the dynamic bond of imine bonds endows the CL-LCE system with rapid self-healing under mild conditions (70 °C in 10 min), excellent stretchability, and adaptive programmable characteristics. Furthermore, the self-luminescent performance enables visual detection of the self-healing process. Finally, CL-based information storage and anticounterfeiting are successfully realized and their applications in fiber actuators and fluorescent textiles are demonstrated. The distinctive luminescence and dynamic chemistry presented in this work has significant implications in elucidating the mechanism of CL and providing new strategies for the rational design of novel multifunctional LCE materials.

7.
ACS Chem Neurosci ; 15(3): 572-581, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38277219

ABSTRACT

Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.


Subject(s)
Neurotoxicity Syndromes , Parkinson Disease , Rats , Animals , Oxidopamine/pharmacology , Dopaminergic Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction
8.
J Gene Med ; 26(1): e3596, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726968

ABSTRACT

Myocardial infarction refers to the irreversible impairment of cardiac function resulting from the permanent loss of numerous cardiomyocytes and the formation of scar tissue. This condition is caused by acute and persistent inadequate blood supply to the heart's arteries. In the treatment of myocardial infarction, Mesenchymal stem cells (MSCs) play a crucial role because of their powerful therapeutic effects. These effects primarily stem from the paracrine secretion of multiple factors by MSCs, with exosome-carried microRNAs being the most effective component in promoting cardiac function recovery after infarction. Exosome therapy has emerged as a promising cell-free treatment for myocardial infarction as a result of its relatively simple composition, low immunogenicity and controlled transplantation dose. Despite these advantages, maintaining the stability of exosomes after transplantation and enhancing their targeting effect remain significant challenges in clinical applications. In recent developments, several approaches have been designed to optimize exosome therapy. These include enhancing exosome retention, improving their ability to target specific effects, pretreating MSC-derived exosomes and employing transgenic MSC-derived exosomes. This review primarily focuses on describing the biological characteristics of exosomes, their therapeutic potential and their application in treating myocardial infarction.


Subject(s)
Exosomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Humans , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/therapy , Myocytes, Cardiac , MicroRNAs/genetics
9.
Bioeng Transl Med ; 8(6): e10586, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023722

ABSTRACT

Postoperative adjuvant chemotherapy (AC) for poor responders to neoadjuvant chemoradiotherapy (nCRT) remains debatable among patients with locally advanced rectal cancer (LARC), necessitating biomarkers to accurately predict the benefits of AC. This study aimed to develop a patient-derived tumor organoid (PDTO) platform to predict the benefit of AC in LARC patients showing poor nCRT response. PDTOs were established using irradiated rectal cancer specimens with poor nCRT responses, and their sensitivity to chemotherapy regimens was tested. The half-maximal inhibitory concentration (IC50) value for the PDTO drug test was defined based on the clinical outcomes, and the accuracy of the PDTO prognostic predictions was calculated. Predictive models were developed and validated using the PDTO drug test results. Between October 2018 and December 2021, 86 PDTOs were successfully constructed from 138 specimens (success rate 62.3%). The optimal IC50 cut-off value for the organoid drug test was 39.31 µmol/L, with a sensitivity of 84.75%, a specificity of 85.19%, and an accuracy of 84.88%. Multivariate Cox regression analysis revealed that the PDTO drug test was an independent predictor of prognosis. A nomogram based on the PDTO drug test was developed, showing good prognostic ability in predicting the 2-year and 3-year disease-free survivals (AUC of 0.826 [95% CI, 0.721-0.931] and 0.902 [95% CI, 0.823-0.982], respectively) and overall survivals (AUC of 0.859 [95% CI, 0.745-0.973] and 0.885 [95% CI, 0.792-0.978], respectively). The PDTO drug test can predict the benefit of postoperative AC in poor responders with LARC to nCRT.

10.
iScience ; 26(11): 108130, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37876795

ABSTRACT

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

11.
Cytotechnology ; 75(6): 505-516, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37841957

ABSTRACT

Osteoporosis is a complicated multifactorial disorder characterized by low bone mass and deteriorated bone microarchitecture with an elevated fracture risk. MicroRNAs play important roles in osteoblastic differentiation. In the present study, we found that miR-224-5p was markedly downregulated during the osteogenic differentiation of C2C12 cells. Overexpression of miR-224-5p in C2C12 cells inhibited osteoblast activity, as indicated by reduced ALP activity, matrix mineralization and the expression of osteogenic marker genes. Moreover, we demonstrated that Runx2 and Sp7 were direct targets of miR-224-5p. Furthermore, the specific inhibition of miR-224-5p by femoral bone marrow cavity injection with miR-224-5p antagomir prevented ovariectomy-induced bone loss. Finally, we found that the levels of miR-224-5p were markedly elevated in the sera of patients with osteoporosis. Collectively, this study revealed that miR-224-5p negatively regulates osteogenic differentiation by targeting Runx2 and Sp7. It also highlights the potential use of miR-224-5p as a therapeutic target and diagnostic biomarker for osteoporosis. Supplementary information: The online version contains supplementary material available at 10.1007/s10616-023-00593-z.

12.
Theor Appl Genet ; 136(10): 210, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728763

ABSTRACT

Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.


Subject(s)
Calcium Signaling , Calcium , Salt Stress , Cold Temperature , Hot Temperature
13.
iScience ; 26(10): 107838, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37752950

ABSTRACT

HS3ST3B1-IT1 was identified as a downregulated long noncoding RNA in osteoarthritic cartilage. However, its roles and mechanisms in the pathogenesis of osteoarthritis (OA) are unclear. In this study, we demonstrated that the expressions of HS3ST3B1-IT1 and its maternal gene HS3ST3B1 were downregulated and positively correlated in osteoarthritic cartilage. Overexpression of HS3ST3B1-IT1 significantly increased chondrocyte viability, inhibited chondrocyte apoptosis, and upregulated extracellular matrix (ECM) proteins, whereas HS3ST3B1-IT1 knockdown had the opposite effects. In addition, HS3ST3B1-IT1 significantly ameliorated monosodium-iodoacetate-induced OA in vivo. Mechanistically, HS3ST3B1-IT1 upregulated HS3ST3B1 expression by blocking its ubiquitination-mediated degradation. Knockdown of HS3ST3B1 reversed the effects of HS3ST3B1-IT1 on chondrocyte viability, apoptosis, and ECM metabolism. AlkB homolog 5 (ALKBH5)-mediated N6-methyladenosine (m6A) demethylation stabilized HS3ST3B1-IT1 RNA. Together, our data revealed that ALKBH5-mediated upregulation of HS3ST3B1-IT1 suppressed OA progression by elevating HS3ST3B1 expression, suggesting that HS3ST3B1-IT1/HS3ST3B1 may serve as potential therapeutic targets for OA treatment.

14.
Brain Sci ; 13(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37626522

ABSTRACT

BACKGROUND: Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS: Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS: A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS: Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.

15.
Environ Pollut ; 336: 122437, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634565

ABSTRACT

Particulate matter (PM) inhaled into human lungs causes oxidative stress and adverse health effects through antioxidant depletion (oxidative potential, OP). However, there is limited knowledge regarding the association between the lung-deposited dose (LDD) of PM and OP in extrathoracic (ET), tracheobronchial (TB), and pulmonary (P) regions of human lungs. Dithiothreitol (DTT) and ascorbic acid (AA) assays were employed to measure the OP of PM size fractions to investigate OP distribution in human lungs and identify the chemical drivers. Quasi-ultrafine particles (quasi-UFP, ≤0.49 µm) exhibited high OP deposition in the TB and P regions, while coarse particles (CP, ≥3.0 µm) dominated in the ET region. A plot of extrinsic (per air volume) and intrinsic (per PM mass) OP versus LDD revealed that the OP for fine and coarse particles was greatest in the ET region, whereas the OP of quasi-UFP was greatest in alveoli. The study also demonstrated that extrinsic OP and PM doses are not strongly related. The decline in OP with increasing PM dose reveals the need for further investigation of the antagonistic effects of the chemical compositions. Overall, the results presented herein help address the gap in knowledge regarding the association between the OP and LDD of ambient particles in specific regions of human lungs.

16.
iScience ; 26(7): 107116, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37426352

ABSTRACT

Patient-derived tumor organoids (PDTOs) have the potential to be used to predict the patient response to chemotherapy. However, the cutoff value of the half-maximal inhibition concentration (IC50) for PDTO drug sensitivity has not been validated with clinical cohort data. We established PDTOs and performed a drug test in 277 samples from 242 CRC patients who received FOLFOX or XELOX chemotherapy. After follow-up and comparison of the PDTO drug test and final clinical outcome results, the optimal IC50 cutoff value for PDTO drug sensitivity was 43.26 µmol/L. This PDTO drug test-defined cutoff value could predict patient response with 75.36% sensitivity, 74.68% specificity, and 75% accuracy. Moreover, this value distinguished groups of patients with significant differences in survival benefit. Our study is the first to define the IC50 cutoff value for the PDTO drug test to effectively distinguish CRC patients with chemosensitivity or nonsensitivity and predict survival benefits.

17.
Arch Biochem Biophys ; 744: 109699, 2023 08.
Article in English | MEDLINE | ID: mdl-37499994

ABSTRACT

Hepatocellular carcinoma (HCC), which is a primary liver cancer subtype, has a poor prognosis due to its high degree of malignancy. The lack of early diagnosis makes systemic therapy the only hope for HCC patients with advanced disease; however, resistance to drugs is a major obstacle. In recent years, targeted molecular therapy has gained popularity as a potential treatment for HCC. An increase in reactive oxygen species (ROS), which are cancer markers and a potential target for HCC therapy, can both promote and inhibit the disease. At present, many studies have examined targeted regulation of ROS in the treatment of HCC. Here, we reviewed the latest drugs that are still in the experimental stage, including nanocarrier drugs, exosome drugs, antibody drugs, aptamer drugs and polysaccharide drugs, to provide new hope for the clinical treatment of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Reactive Oxygen Species
18.
Cell Signal ; 109: 110748, 2023 09.
Article in English | MEDLINE | ID: mdl-37290676

ABSTRACT

Salivary adenoid cystic carcinoma (SACC) is a rare malignant tumor of the salivary gland. Studies have suggested that miRNA may play a crucial role in the invasion and metastasis of SACC. This study aimed to investigate the role of miR-200b-5p in SACC progression. Reverse transcription-quantitative PCR and western blot assay were used to detect the expression levels of miR-200b-5p and BTBD1. The biological functions of miR-200b-5p were evaluated via wound-healing assays, transwell assays, and xenograft nude mice model. The interaction between miR-200b-5p and BTBD1 was assessed using luciferase assay. Results showed that miR-200b-5p was downregulated in the SACC tissues while BTBD1 was upregulated. miR-200b-5p overexpression suppressed SACC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Bioinformatics prediction and luciferase reporter assay revealed that miR-200b-5p could directly bind to BTBD1. Besides, miR-200b-5p overexpression could rescue the tumor-promoting effect of BTBD1. miR-200b-5p inhibited tumor progression by modulating EMT-related proteins, targeting BTBD1 and inhibiting PI3K/AKT signaling pathway. Overall, our findings indicate that miR-200b-5p can suppress SACC proliferation, migration, invasion, and EMT by regulating BTBD1 and PI3K/AKT axis, providing a promising therapeutic target for SACC treatment.


Subject(s)
Carcinoma, Adenoid Cystic , MicroRNAs , Salivary Gland Neoplasms , Animals , Mice , Humans , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/pathology , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Invasiveness/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
19.
Cell Rep ; 42(6): 112589, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37270777

ABSTRACT

Osteoarthritis (OA) is the most common degenerative disorder, affecting approximately half of the elderly population. In this study, we find that the expressions of long noncoding RNA (lncRNA) IGFBP7-OT and its maternal gene, IGFBP7, are upregulated and positively correlated in osteoarthritic cartilage. Overexpression of IGFBP7-OT significantly inhibits chondrocyte viability, promotes chondrocyte apoptosis, and reduces extracellular matrix components, whereas IGFBP7-OT knockdown has the opposite effects. IGFBP7-OT overexpression promotes cartilage degeneration and markedly aggravates the monosodium iodoacetate-induced OA phenotype in vivo. Further mechanistic research reveals that IGFBP7-OT promotes OA progression by upregulating IGFBP7 expression. Specifically, IGFBP7-OT suppresses the occupancy of DNMT1 and DNMT3a on the IGFBP7 promoter, thereby inhibiting methylation of the IGFBP7 promoter. The upregulation of IGFBP7-OT in OA is partially controlled by METTL3-mediated N6-methyladenosine (m6A) modification. Collectively, our findings reveal that m6A modification of IGFBP7-OT promotes OA progression by regulating the DNMT1/DNMT3a-IGFBP7 axis and provide a potential therapeutical target for OA treatment.


Subject(s)
DNA Methyltransferase 3A , DNA Modification Methylases , Osteoarthritis , RNA, Long Noncoding , Aged , Humans , Apoptosis , Cartilage/metabolism , Chondrocytes , DNA Modification Methylases/metabolism , Methyltransferases/metabolism , Osteoarthritis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Up-Regulation/genetics , DNA Methyltransferase 3A/metabolism , Animals , Mice
20.
BMC Neurol ; 23(1): 226, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301871

ABSTRACT

BACKGROUND: The glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 (LRRK2) genes are associated with the risk of sporadic Parkinson's disease (PD). As an environmental factor, hypoxic insults may impair dopamine neurons in the substantia nigra and exacerbate PD symptoms. However, covariants of GBA and LRRK2 combined with hypoxic insults in clinical cases of Parkinsonism have not yet been reported. CASE PRESENTATION: A 69-year-old male patient with PD and his relatives were clinically characterized and sequenced using the whole-exome technique. A novel covariant, c.1448 T > C (p. L483P, rs421016) on GBA and c.691 T > C (p. S231P, rs201332859) on LRRK2 were identified in this patient who first developed bradykinesia and rigidity in the neck at one month after an acute hypoxic insult during mountaineering. The patient presented with a mask-like face, festinating gait, asymmetric bradykinesia, and moderate rigidity. These symptoms were treated with levodopa and pramipexole, resulting in a 65% improvement in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score. These parkinsonian symptoms persisted and developed with hallucinations, constipation, and rapid eye movement sleep behavior disorder. After 4 years, the patient exhibited a wearing-off phenomenon and died from pulmonary infection 8 years after disease onset. His parents, wife, and siblings were not diagnosed with PD, and his son carried p. L483P without Parkinsonism-like symptoms. CONCLUSIONS: This is a case report of PD after hypoxic insult in a patient carrying a covariant of GBA and LRRK2. This study may help us understand the interaction between genetic and environmental factors in clinical PD.


Subject(s)
Parkinson Disease , Male , Humans , Aged , Parkinson Disease/complications , Parkinson Disease/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Glucosylceramidase/genetics , Hypokinesia , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...