Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 578
1.
Front Oncol ; 14: 1362436, 2024.
Article En | MEDLINE | ID: mdl-38720811

Objective: This review aims to provide a quantitative and qualitative bibliometric analysis of literature from 2013 to 2023 on the role of exosomes in PC, with the goal of identifying current trends and predicting future hotspots. Methods: We retrieved relevant publications concerning exosomes in PC, published between 2013 and 2023, from the Web of Science Core Collection. Bibliometric analyses were conducted using VOSviewer(1.6.19), CiteSpace(6.2.R4), and Microsoft Excel (2019). Results: A total of 624 papers were analyzed, authored by 4017 researchers from 55 countries/regions and 855 institutions, published in 258 academic journals. China (n=285, 34.42%) and the United States (n=183, 24.87%) were the most frequent contributors and collaborated closely. However, publications from China had a relatively low average number of citations (41.45 times per paper). The output of Shanghai Jiao Tong University ranked first, with 28 papers (accounting for 4.5% of the total publications). Cancers (n=31, 4.9%); published the most papers in this field. Researcher Margot Zoeller published the most papers (n=12) on this topic. Research hotspots mainly focused on the mechanisms of exosomes in PC onset and progression, the role of exosomes in PC early diagnosis and prognosis, exosomes promote the development of PC chemoresistance, and potential applications of exosomes as drug carriers for PC therapies. We observed a shift in research trends, from mechanistic studies toward clinical trials, suggesting that clinical applications will be the focus of future attention. Emerging topics were pancreatic stellate cells, diagnostic biomarkers, mesenchymal stem cells, extracellular vesicles. Conclusion: Our scientometric and visual analysis provides a comprehensive overview of the literature on the role of exosomes in PC published during 2013-2023. This review identifies the frontiers and future directions in this area over the past decade, and is expected to provide a useful reference for researchers in this field.

2.
Eur Rev Aging Phys Act ; 21(1): 13, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764039

BACKGROUND: Balance plays a crucial role in the daily activities of older adults. Aquatic-based exercises (AE) are widely conducted as an alternative to land-based exercises (LE). Previous studies have compared AE and LE as effective ways to improve balance and have yielded inconsistent results. Therefore, this review aimed to compare the effects of AE and LE on balance function in older adults. METHODS: Electronic databases, including PubMed, Web of Science, Scopus, and Embase, were searched. Randomized controlled trials published from January 2003 to June 2023 were included following predetermined criteria. Data extraction was carried out by two independent reviewers. Data synthesis was conducted using RevMan 5.3 software. The fixed-effect model or random-effect model was chosen based on the results of the heterogeneity test. Meta-analysis for the effect sizes of balance outcomes was calculated as standardized mean difference (SMD) with 95% confidence intervals (CI). The quality of the included studies was evaluated using the Physiotherapy Evidence Database (PEDro) scale. This review was registered at PROSPERO CRD42023429557. RESULTS: A total of 29 studies involving 1486 older adults (with an average age of 66.2 years) were included. Meta-analysis results indicated that AE could improve balance ability based on two tests: the Berg balance scale (BBS: SMD = 1.13, 95% CI 0.25 to 2.00, p = 0.01, I2 = 94%) and the 30-s chair stand test (30 CST: SMD = 2.02, 95% CI 0.50 to 3.54, p = 0.009, I2 = 96%). However, there were no significant differences between the AE group and the LE group in terms of the 6-min walking test (6 MWT: SMD = 0.13, 95% CI -0.16 to 0.43, p = 0.38, I2 = 62%) and time up to go test (TUGT: SMD = 0.44, 95% CI -0.44 to 0.91, p = 0.07, I2 = 85%). Older adults with different health conditions have different gains in different balance measurements after AE intervention and LE intervention. CONCLUSIONS: Although this was influenced by participant health status, transfer effects, sample size, and other factors, AE offers better benefits than LE for improving balance function in older adults.

3.
Langmuir ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38804701

In recent years, increasing attention has been paid to photoelectrochemical (PEC) hydrogen production owing to the utilization of sustainable solar energy and its promising performance. Silicon-based composites are generally considered ideal materials for PEC hydrogen production. However, slow reaction kinetics and poor stability are still key factors hindering the development of silicon-based photoelectrocatalysts. Herein, we present an n+-p Si pyramidal photocathode assembly method to load reduced graphene oxide (rGO) onto the surface of the n+-p Si pyramid by covalently linking (Si/rGO). rGO is utilized as a conductive layer to reduce the interfacial charge-transfer resistance. Then, MoS2 can be successfully electrodeposited on the surface of Si/rGO to form the Si/rGO/MoS2 composite, which possesses excellent PEC hydrogen evolution performance with a high and stable photocurrent of -41.6 mA cm-2 and a hydrogen evolution rate of about 18.1 µmol min-1 cm-2 under 0 V (vs RHE). The covalently linking rGO layer effectively enhances the transfer of photogenerated carriers between the Si substrate and MoS2. MoS2 provides abundant hydrogen evolution active sites, which accelerate the surface reaction kinetics, as well as a protective layer for the Si pyramidal array structure. This work provides a low-cost, convenient, and efficient way of preparing silicon-based photocathodes.

4.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38790627

This study aimed to assess the influence of varying dietary levels of astaxanthin (AST) on the growth, antioxidant capacity and lipid metabolism of juvenile swimming crabs. Six diets were formulated to contain different AST levels, and the analyzed concentration of AST in experimental diets were 0, 24.2, 45.8, 72.4, 94.2 and 195.0 mg kg-1, respectively. Juvenile swimming crabs (initial weight 8.20 ± 0.01 g) were fed these experimental diets for 56 days. The findings indicated that the color of the live crab shells and the cooked crab shells gradually became red with the increase of dietary AST levels. Dietary 24.2 mg kg-1 astaxanthin significantly improved the growth performance of swimming crab. the lowest activities of glutathione (GSH), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and peroxidase (POD) were found in crabs fed without AST supplementation diet. Crabs fed diet without AST supplementation showed lower lipid content and the activity of fatty acid synthetase (FAS) in hepatopancreas than those fed diets with AST supplementation, however, lipid content in muscle and the activity of carnitine palmitoyl transferase (CPT) in hepatopancreas were not significantly affected by dietary AST levels. And it can be found in oil red O staining that dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas. Crabs fed diet with 195.0 mg kg-1 AST exhibited lower expression of ampk, foxo, pi3k, akt and nadph in hepatopancreas than those fed the other diets, however, the expression of genes related to antioxidant such as cMn-sod, gsh-px, cat, trx and gst in hepatopancreas significantly down-regulated with the increase of dietary AST levels. In conclusion, dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas and im-proved the antioxidant and immune capacity of hemolymph.

5.
Adv Mater ; : e2404824, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733312

Rational molecular design and suitable device engineering are two important strategies to boost the efficiencies in organic solar cells (OSCs). Yet these two approaches are independently developed, while their synergy is believed to be more productive. Herein, a branched polyfluoride moiety, heptafluoroisopropoxyl group, is introduced into the side chains of conjugated polymers for the first time. Compared with the conventional alkyl chain, this polyfluoride chain can endow the resulting polymer namely PF7 with highly packing order and strong crystallinity owing to the strong polarization and fluorine-induced interactions, while good solubility and moderate miscibility are retained. As a result, PF7 comprehensively outperforms the state-of-the-art polymer PM6 in photovoltaic properties. More importantly, based on the solubility of heptafluoroisopropoxyl groups in fluorous solvents, a new post-treatment denoted as fluorous solvent vapor annealing (FSVA) is proposed to match PF7. Differing from the existing post-treatments, FSVA can selectively reorganize fluoropolymer molecules but less impact small molecules in blend films. By employing the synergy of fluoropolymer and fluorous solvent, the device achieves a remarkable efficiency of 19.09%, which is among the best efficiencies in binary OSCs. The polymer PF7 and the FSVA treatment exhibit excellent universality in various OSCs with different material combinations or device architectures.

6.
Neuroreport ; 35(10): 638-647, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38813908

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1 h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100 µm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7 mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50 µm and Danshensu of 200 µm failed to cause significantly more enhancement on K+ currents when compared to that of 100 µm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.


Cochlear Nucleus , Lactates , Neurons , Animals , Mice , Neurons/drug effects , Neurons/physiology , Lactates/pharmacology , Cochlear Nucleus/drug effects , Cochlear Nucleus/physiology , Patch-Clamp Techniques , Action Potentials/drug effects , Action Potentials/physiology , Male , Potassium Channels/drug effects , Potassium Channels/metabolism , Mice, Inbred C57BL
7.
Angew Chem Int Ed Engl ; : e202407007, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806441

Designing and synthesizing narrow bandgap acceptors that exhibit high photoluminescence quantum yield (PLQY) and strong crystallinity is a highly effective, yet challenging, approach to reducing non-radiative energy losses (∆Enr) and boosting the performance of organic solar cells (OSCs). We have successfully designed and synthesized an A-D-A type fused-ring electron acceptor, named DM-F, which features a planar molecular backbone adorned with bulky three-dimensional camphane side groups at its central core. These bulky substituents effectively hinder the formation of H-aggregates of the acceptors, promoting the formation of more J-aggregates and notably elevating the PLQY of the acceptor in the film. As anticipated, DM-F showcases pronounced near-infrared absorption coupled with impressive crystallinity. Organic solar cells (OSCs) leveraging DM-F exhibit a high EQEEL value and remarkably low ∆Enr of 0.137 eV-currently the most minimal reported value for OSCs. Moreover, the power conversion efficiency (PCE) of binary and ternary OSCs utilizing DM-F has reached 16.16% and 20.09%, respectively, marking a new apex in reported efficiency within the OSCs field. In conclusion, our study reveals that designing narrow bandgap acceptors with high PLQY is an effective way to reduce ∆Enr and improve the PCE of OSCs.

8.
Cell Oncol (Dordr) ; 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38607517

PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.

9.
Front Neurosci ; 18: 1373375, 2024.
Article En | MEDLINE | ID: mdl-38660220

Objective: To observe the efficacy and safety of pelvic floor magnetic stimulation (PFMS) combined with mirabegron in female patients with refractory overactive bladder (OAB) symptoms. Patients and methods: A total of 160 female patients with refractory OAB symptoms were prospectively randomized into two groups. Eighty cases in the combination group accepted PFMS and mirabegron therapy and 80 cases as control only accepted mirabegron therapy (The clinical trial registry number: ChiCTR2200070171). The lower urinary tract symptoms, OAB questionnaire (OAB-q) health-related quality of life (HRQol), symptom bother score and OABSS between two groups were compared at the 1st, 2nd and 4th week ends. Results: All of 160 patients were randomly assigned to two groups, of which 80 patients were included in the combination group and 80 in the mirabegron group. The incidences of LUTS, including urgency, frequent urination, and incontinence episodes, in the 2nd week and the 4th week after combination treatment were significantly lower than those in the mirabegron group (p < 0.05). The incidence of drug-related adverse events between two groups was similar, and there was no statistically significant difference (p > 0.05). With respect to secondary variables, the OAB-q HRQol score in the combination group was statistically superior in comparison with that in the mirabegron group between the 2nd week and the 4th week (p < 0.05). This was consistent with the primary outcome. Meanwhile, from the second to fourth week, the OAB-q symptom bother score and OABSS in the combination group were both lower than in the mirabegron group (p < 0.05). Conclusion: Combination therapy of PFMS and mirabegron demonstrated significant improvements over mirabegron monotherapy in reducing refractory OAB symptoms for female patients, and providing a higher quality of life without increasing bothersome adverse effects. Clinical Trial Registration: https://www.chictr.org.cn/, ChiCTR-INR-22013524.

10.
Front Pharmacol ; 15: 1364546, 2024.
Article En | MEDLINE | ID: mdl-38645560

Object: The benefits of low-dose esketamine for painless gastrointestinal endoscopy remain unclear. As such, the present study aimed to investigate the efficacy and safety of low-dose esketamine for this procedure. Methods: Seven common databases were searched for clinical studies investigating low-dose esketamine for painless gastrointestinal endoscopy. Subsequently, a meta-analysis was performed to synthesize and analyze the data extracted from studies fulfilling the inclusion criteria. Results: Meta-analysis revealed that, compared with propofol, low-dose esketamine in combination with propofol significantly reduced recovery time by 0.56 min (mean difference [MD] -0.56%, 95% confidence interval (CI) -1.08 to -0.05, p = 0.03), induction time by 9.84 s (MD -9.84, 95% CI -12.93 to -6.75, p < 0.00001), propofol dosage by 51.05 mg (MD -51.05, 95% CI -81.53 to -20.57, p = 0.01), and increased mean arterial pressure by 6.23 mmHg (MD 6.23, 95% CI 1.37 to 11.08, p = 0.01). Meanwhile, low-dose esketamine reduced injection pain by 63% (relative risk [RR] 0.37, 95% CI 0.28 to 0.49, p < 0.00001), involuntary movements by 40% (RR 0.60, 95% Cl 0.42 to 0.85, p < 0.005), choking by 42% (RR 0.58, 95% Cl 0.38 to 0.88, p = 0.01), bradycardia by 68% (RR 0.32, 95% Cl 0.18 to 0.58, p = 0.0002), hypotension by 71% (RR 0.29, 95% Cl 0.21 to 0.40, p < 0.00001), respiratory depression by 63% (RR 0.37, 95% 0.26 to 0.51, p < 0.00001), additional cases of propofol by 53% (RR 0.47, 95% Cl 0.29 to 0.77, p = 0.002), and increased hypertension by 1000% (RR 11.00, 95% Cl 1.45 to 83.28, p = 0.02). There were no significant differences in mean heart rate, mean oximetry saturation, delirium, dizziness, vomiting, tachycardia, and hypoxemia. Subgroup analyses revealed that, compared with other dose groups, 0.25 mg/kg esketamine afforded additional benefits in recovery and induction time, mean arterial pressure, involuntary movements, hypoxemia, and respiratory depression. Conclusion: Low-dose esketamine was found to be safe and effective for providing anesthesia during gastrointestinal endoscopy, with 0.25 mg/kg identified as the optimal dose within the dosage ranges examined. However, caution should be exercised when administering this drug to patients with inadequate preoperative blood pressure control.

11.
Inorg Chem ; 63(17): 7886-7895, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38621298

In the quest for proficient electrocatalysts for ammonia's electrocatalytic nitrogen reduction, cobalt oxides, endowed with a rich d-electron reservoir, have emerged as frontrunners. Despite the previously evidenced prowess of CoO in this realm, its ammonia yield witnesses a pronounced decline as the reaction unfolds, a phenomenon linked to the electron attrition from its Co2+ active sites during electrocatalytic nitrogen reduction reaction (ENRR). To counteract this vulnerability, we harnessed electron-laden phosphorus (P) elements as dopants, aiming to recalibrate the electronic equilibrium of the pivotal Co active site, thereby bolstering both its catalytic performance and stability. Our empirical endeavors showcased the doped P-CoO's superior credentials: it delivered an impressive ammonia yield of 49.6 and, notably, a Faradaic efficiency (FE) of 9.6% at -0.2 V versus RHE, markedly eclipsing its undoped counterpart. Probing deeper, a suite of ex-situ techniques, complemented by rigorous theoretical evaluations, was deployed. This dual-pronged analysis unequivocally revealed CoO's propensity for an electron-driven valence metamorphosis to Co3+ post-ENRR. In stark contrast, P-CoO, fortified by P doping, exhibits a discernibly augmented ammonia yield. Crucially, P's intrinsic ability to staunch electron leakage from the active locus during ENRR ensures the preservation of the valence state, culminating in enhanced catalytic dynamism and fortitude. This investigation not only illuminates the intricacies of active site electronic modulation in ENRR but also charts a navigational beacon for further enhancements in this domain.

12.
Angew Chem Int Ed Engl ; 63(23): e202405514, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38584585

Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.

13.
Adv Mater ; : e2403294, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38657281

High performance organic solar cells (OSCs) are usually realized by using post-treatment and/or additive, which can induce the formation of metastable morphology, leading to unfavorable device stability. In terms of the industrial production, the development of high efficiency as-cast OSCs is crucially important, but it remains a great challenge to obtain appropriate active layer morphology and high power conversion efficiency (PCE). Here, efficient as-cast OSCs are constructed via introducing a new polymer acceptor PY-TPT with a high dielectric constant into the D18:L8-BO blend to form a double-fibril network morphology. Besides, the incorporation of PY-TPT enables an enhanced dielectric constant and lower exciton binding energy of active layer. Therefore, efficient exciton dissociation and charge transport are realized in D18:L8-BO:PY-TPT-based device, affording a record-high PCE of 18.60% and excellent photostability in absence of post-treatment. Moreover, green solvent-processed devices, thick-film (300 nm) devices, and module (16.60 cm2) are fabricated, which show PCEs of 17.45%, 17.54%, and 13.84%, respectively. This work brings new insight into the construction of efficient as-cast devices, pushing forward the practical application of OSCs.

14.
Lipids Health Dis ; 23(1): 119, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649912

BACKGROUND: Acute pancreatitis (AP) has become a significant global health concern, and a high body mass index (BMI) has been identified as a key risk factor exacerbating this condition. Within this context, lipid metabolism assumes a critical role. The complex relationship between elevated BMI and AP, mediated by lipid metabolism, markedly increases the risk of complications and mortality. This study aimed to accurately define the correlation between BMI and AP, incorporating a comprehensive analysis of the interactions between individuals with high BMI and AP. METHODS: Mendelian randomization (MR) analysis was first applied to determine the causal relationship between BMI and the risk of AP. Subsequently, three microarray datasets were obtained from the GEO database. This was followed by an analysis of differentially expressed genes and the application of weighted gene coexpression network analysis (WGCNA) to identify key modular genes associated with AP and elevated BMI. Functional enrichment analysis was then performed to shed light on disease pathogenesis. To identify the most informative genes, machine learning algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), were employed. Subsequent analysis focused on the colocalization of the Quantitative Trait Loci (eQTL) data associated with the selected genes and Genome-Wide Association Studies (GWAS) data related to the disease. Preliminary verification of gene expression trends was conducted using external GEO datasets. Ultimately, the diagnostic potential of these genes was further confirmed through the development of an AP model in mice with a high BMI. RESULTS: A total of 21 intersecting genes related to BMI>30, AP, and lipid metabolism were identified from the datasets. These genes were primarily enriched in pathways related to cytosolic DNA sensing, cytokine‒cytokine receptor interactions, and various immune and inflammatory responses. Next, three machine learning techniques were utilized to identify HADH as the most prevalent diagnostic gene. Colocalization analysis revealed that HADH significantly influenced the risk factors associated with BMI and AP. Furthermore, the trend in HADH expression within the external validation dataset aligned with the trend in the experimental data, thus providing a preliminary validation of the experimental findings.The changes in its expression were further validated using external datasets and quantitative real-time polymerase chain reaction (qPCR). CONCLUSION: This study systematically identified HADH as a potential lipid metabolism-grounded biomarker for AP in patients with a BMI>30.


Body Mass Index , Genome-Wide Association Study , Mendelian Randomization Analysis , Pancreatitis , Quantitative Trait Loci , Humans , Pancreatitis/genetics , Mice , Animals , Biomarkers/blood , Biomarkers/metabolism , Gene Expression Profiling , Transcriptome/genetics , Machine Learning , Lipid Metabolism/genetics , Gene Regulatory Networks , Risk Factors
15.
Nat Commun ; 15(1): 2693, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38538607

Enhancing the device electroluminescence quantum efficiency (EQEEL) is a critical factor in mitigating non-radiative voltage losses (VNR) and further improving the performance of organic solar cells (OSCs). While the common understanding attributes EQEEL in OSCs to the dynamics of charge transfer (CT) states, persistent efforts to manipulate these decay dynamics have yielded limited results, with the EQEEL of high-efficiency OSCs typically remaining below 10-2%. This value is considerably lower than that observed in high efficiency inorganic photovoltaic devices. Here, we report that EQEEL is also influenced by the dissociation rate constant of singlet states (kDS). Importantly, in contrast to the traditional belief that advocates maximizing kDS for superior photovoltaic quantum efficiency (EQEPV), a controlled reduction in kDS is shown to enhance EQEEL without compromising EQEPV. Consequently, a promising experimental approach to address the VNR challenge is proposed, resulting in a significant improvement in the performance of OSCs.

16.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38498427

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

17.
ACS Chem Neurosci ; 15(7): 1548-1559, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38527459

Ischemic strokes, prevalence and impactful, underscore the necessity of advanced research models closely resembling human physiology. Our study utilizes nonhuman primates (NHPs) to provide a detailed exploration of ischemic stroke, integrating neuroimaging data, behavioral outcomes, and serum proteomics to elucidate the complex interplay of factors involved in stroke pathophysiology. We observed a consistent pattern in infarct volume, peaking at 1-month postmiddle cerebral artery occlusion (MCAO) and then stabilized. This pattern was strongly correlated to notable changes in motor function and working memory performance. Using diffusion tensor imaging (DTI), we detected significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values, signaling microstructural changes in the brain. These alterations closely correlated with the neurological and cognitive deficits that we observed, highlighting the sensitivity of DTI metrics in stroke assessment. Behaviorally, the monkeys exhibited a reliance on their unaffected limb for compensatory movements, a common response to stroke impairment. This adaptation, along with consistent DTI findings, suggests a significant impact of stroke on motor function and spatial perception. Proteomic analysis through MS/MS functional enrichment identified two distinct groups of proteins with significant changes post-MCAO. Notably, MMP9, THBS1, MB, PFN1, and YWHAZ were identified as potential biomarkers and therapeutic targets for ischemic stroke. Our results underscore the complex nature of stroke and advocate for an integrated approach, combining neuroimaging, behavioral studies, and proteomics, for advancing our understanding and treatment of this condition.


Ischemic Stroke , Stroke , Animals , Humans , Ischemic Stroke/diagnostic imaging , Diffusion Tensor Imaging/methods , Proteomics , Tandem Mass Spectrometry , Stroke/diagnostic imaging , Neuroimaging , Primates , Profilins
18.
J Transl Med ; 22(1): 306, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528587

BACKGROUND: Tumor-associated macrophages (TAMs) play a pivotal role in reshaping the tumor microenvironment following radiotherapy. The mechanisms underlying this reprogramming process remain to be elucidated. METHODS: Subcutaneous Lewis lung carcinoma (LLC) murine model was treated with hypofrationated radiotherapy (8 Gy × 3F). Single-cell RNA sequencing was utilized to identify subclusters and functions of TAMs. Multiplex assay and enzyme-linked immunosorbent assay (ELISA) were employed to measure serum chemokine levels. Bindarit was used to inhibit CCL8, CCL7, and CCL2. The infiltration of TAMs after combination treatment with hypofractionated radiotherapy and Bindarit was quantified with flow cytometry, while the influx of CD206 and CCL8 was assessed by immunostaining. RESULTS: Transcriptome analysis identified a distinct subset of M2-like macrophages characterized by elevated Ccl8 expression level following hypofractionated radiotherapy in LLC-bearing mice. Remarkbly, hypofractionated radiotherapy not only promoted CCL8high macrophages infiltration but also reprogrammed them by upregulating immunosuppressive genes, thereby fostering an immunosuppressive tumor microenvironment. Additioinally, hypofractionated radiotherapy enhanced the CCL signaling pathway, augmenting the pro-tumorigenic functions of CCL8high macrophages and boosting TAMs recruitment. The adjunctive treatment combining hypofractionated radiotherapy with Bindarit effectively reduced M2 macrophages infiltration and prolonged the duration of local tumor control. CONCLUSIONS: Hypofractionated radiotherapy enhances the infiltration of CCL8high macrophages and amplifies their roles in macrophage recruitment through the CCL signaling pathway, leading to an immunosuppressive tumor microenvironment. These findings highlight the potential of targeting TAMs and introduces a novel combination to improve the efficacy of hypofractionated radiotherapy.


Carcinoma, Lewis Lung , Macrophages , Animals , Mice , Carcinoma, Lewis Lung/radiotherapy , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Indazoles/pharmacology , Macrophages/metabolism , Propionates/pharmacology , Sequence Analysis, RNA , Tumor Microenvironment/genetics , Single-Cell Analysis , Chemokine CCL8
19.
Heliyon ; 10(5): e26627, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38455568

Unmanned aerial vehicles (UAVs) have been generally applied in the field of communication due to their small size, flexible mobility, and convenient deployment. As a mobile base station, the UAV node can quickly establish a line-of-sight link with the ground node, thereby improving communication performance. In this paper, we study a multi-UAV assisted data collecting system. Specifically, in the case of limited system energy consumption, UAV flight energy consumption and ground node data transmission energy consumption are considered as an general limitation, and considering the channel interference between nodes, a multi-UAV assisted data collection model is studied. An non-convex problem that maximizes the minimum amount of data collected from ground nodes is further formulated. Since the original optimization problem is non-convex that difficult to solve directly, the problem is first decomposed into four sub-problems, and then the solution of each sub-problem is obtained by using successive convex approximation and block coordinate descent method. Finally, based on the solution of the four subproblems, an iterative algorithm for joint optimization of data transmission planning, transmission power, UAV trajectory and mission time is proposed. Simulation experiments show that the proposed algorithm can obtain more transmission data than the baseline algorithms.

20.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 131-138, 2024 Feb 15.
Article Zh | MEDLINE | ID: mdl-38436309

OBJECTIVES: To investigate the clinical characteristics and prognosis of pneumococcal meningitis (PM), and drug sensitivity of Streptococcus pneumoniae (SP) isolates in Chinese children. METHODS: A retrospective analysis was conducted on clinical information, laboratory data, and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country. RESULTS: Among the 160 children with PM, there were 103 males and 57 females. The age ranged from 15 days to 15 years, with 109 cases (68.1%) aged 3 months to under 3 years. SP strains were isolated from 95 cases (59.4%) in cerebrospinal fluid cultures and from 57 cases (35.6%) in blood cultures. The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87) and 27% (21/78), respectively. Fifty-five cases (34.4%) had one or more risk factors for purulent meningitis, 113 cases (70.6%) had one or more extra-cranial infectious foci, and 18 cases (11.3%) had underlying diseases. The most common clinical symptoms were fever (147 cases, 91.9%), followed by lethargy (98 cases, 61.3%) and vomiting (61 cases, 38.1%). Sixty-nine cases (43.1%) experienced intracranial complications during hospitalization, with subdural effusion and/or empyema being the most common complication [43 cases (26.9%)], followed by hydrocephalus in 24 cases (15.0%), brain abscess in 23 cases (14.4%), and cerebral hemorrhage in 8 cases (5.0%). Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old, with rates of 91% (39/43) and 83% (20/24), respectively. SP strains exhibited complete sensitivity to vancomycin (100%, 75/75), linezolid (100%, 56/56), and meropenem (100%, 6/6). High sensitivity rates were also observed for levofloxacin (81%, 22/27), moxifloxacin (82%, 14/17), rifampicin (96%, 25/26), and chloramphenicol (91%, 21/23). However, low sensitivity rates were found for penicillin (16%, 11/68) and clindamycin (6%, 1/17), and SP strains were completely resistant to erythromycin (100%, 31/31). The rates of discharge with cure and improvement were 22.5% (36/160) and 66.2% (106/160), respectively, while 18 cases (11.3%) had adverse outcomes. CONCLUSIONS: Pediatric PM is more common in children aged 3 months to under 3 years. Intracranial complications are more frequently observed in children under 1 year old. Fever is the most common clinical manifestation of PM, and subdural effusion/emphysema and hydrocephalus are the most frequent complications. Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates. Adverse outcomes can be noted in more than 10% of PM cases. SP strains are high sensitivity to vancomycin, linezolid, meropenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Empyema , Hydrocephalus , Meningitis, Pneumococcal , Subdural Effusion , Infant , Female , Male , Humans , Child , Infant, Newborn , Adolescent , Meningitis, Pneumococcal/drug therapy , Meningitis, Pneumococcal/epidemiology , Meropenem , Vancomycin , Levofloxacin , Linezolid , Moxifloxacin , Retrospective Studies , Rifampin , Streptococcus pneumoniae , Chloramphenicol
...