Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
Foodborne Pathog Dis ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133119

ABSTRACT

Toxoplasma gondii is a widespread protozoan parasite approximately infecting one-third of the world population and can cause serious public health problems. In this study, we investigated the protective effect of the attenuated vaccine Pru:Δcdpk2 against acute toxoplasmosis and explored the underlying immune mechanisms of the protection in pigs. The systemic T-cell and natural killer (NK) cell responses were analyzed, including kinetics, phenotype, and multifunctionality (interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and the IFN-γ levels were analyzed in PBMCs. Our results showed that T. gondii-specific antibodies were induced by Pru:Δcdpk2. After challenging with RH, the antibodies were able to respond quickly in the immunized group, and the expression level was significantly higher than that in the unimmunized group. The expression level of IFN-γ significantly increased after vaccination, and the CD3+ γδ-, NK, and CD3+ γδ+ cell subsets also significantly increased. At the same time, functional analysis indicated that these cells were polarized toward a Th1 phenotype, showing the ability to secrete IFN-γ and TNF-α. The CD4+CD8α-T cell population exhibited a higher frequency of IFN-γ+ producing cells compared with the CD4-CD8α+ and CD4+CD8α+ cell populations during the early days of vaccination. Our results indicated that the attenuated vaccine could induce the expression of NK, γδ, and CD3αß cells in pigs, and IFN-γ and TNF-α secreted by these cells are important for resistance to T. gondii infection.

2.
Nat Commun ; 15(1): 5987, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013913

ABSTRACT

Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.


Subject(s)
Ethylenes , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Receptors, Cell Surface , Signal Transduction , Oryza/metabolism , Oryza/genetics , Ethylenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphorylation , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Plants, Genetically Modified , Membrane Proteins/metabolism , Membrane Proteins/genetics
3.
BJR Case Rep ; 10(4): uaae024, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027401

ABSTRACT

Malignant paraganglioma (PGL) of the prostate is extremely rare, with only 3 cases reported in the English literature to date. In this article, we present a case of malignant prostatic PGL invading the bladder and bilateral seminal vesicles, in which the patient had a history of long-term haematuria and normal serum prostate specific antigen (PSA) level, and was misdiagnosed as a bladder tumour invading the prostate preoperatively. As this case belongs to functional tumour, there is a risk of developing hypertensive crisis during diagnostic biopsy or radical resection. The CT manifestations of prostatic PGL are characteristic, but its imaging features are rarely described due to the rarity of the tumour site. Meanwhile, improving the comprehensive understanding of CT, MRI, functional imaging, and clinical features of prostate PGL is conducive to make the correct diagnosis before surgery and ensure the safety of surgical treatment.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124566, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833890

ABSTRACT

Nitrite (NO2-) widely exists in our daily diet, and its excessive consumption can lead to detrimental effects on the human central nervous system and an elevated risk of cancer. The fluorescence probe method for the determination of nitrite has developed rapidly due to its simplicity, rapidity and sensitivity. Despite establishing various nitrite sensing platforms to ensure the safety of foods and drinking water, the simultaneous achievement of rapid, specific, affordable, visualizing, and on-site nitrite detection remains challenging. Here, we designed a novel fluorescent probe by using Rhodamine 800 as the fluorescent skeleton and 5-aminoindole as the specific reaction group to solve this problem. The probe shows a maximal fluorescence emission at 602 nm, thereby avoiding background emission interference when applied to food samples. Moreover, this unique probe exhibited excellent sensing capabilities for detecting nitrite. These included: a rapid response time within 3 min, a noticeable color change that the naked eye can observe, a low detection limit of 13.8 nM, and a remarkable selectivity and specificity to nitrite. Besides that, the probe can detect nitrite quantitatively in barreled drinking water, ham sausage, and pickles samples, with good recoveries ranging from 89.0 % to 105.8 %. More importantly, based on the probe fixation and signal processing technology, a portable and smart sensing platform was fabricated and made convenient and rapid analysis the content of NO2- in real samples possible. The results obtained in this work provide a new strategy for the design of high-performance nitrite probes and feasible technology for portable, rapid and visual detection of nitrite, and this probe holds the potential as a practical tool for alleviating concern regarding nitrite levels.


Subject(s)
Fluorescent Dyes , Indoles , Limit of Detection , Nitrites , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Nitrites/analysis , Indoles/chemistry , Drinking Water/analysis , Humans , Meat Products/analysis
5.
Plant Cell ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943676

ABSTRACT

The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.

6.
PLoS One ; 19(5): e0289854, 2024.
Article in English | MEDLINE | ID: mdl-38771750

ABSTRACT

INTRODUCTION: Recent research suggests that endothelial activation plays a role in coronavirus disease 2019 (COVID-19) pathogenesis by promoting a pro-inflammatory state. However, the mechanism by which the endothelium is activated in COVID-19 remains unclear. OBJECTIVE: To investigate the mechanism by which COVID-19 activates the pulmonary endothelium and drives pro-inflammatory phenotypes. HYPOTHESIS: The "inflammatory load or burden" (cytokine storm) of the systemic circulation activates endothelial NADPH oxidase 2 (NOX2) which leads to the production of reactive oxygen species (ROS) by the pulmonary endothelium. Endothelial ROS subsequently activates pro-inflammatory pathways. METHODS: The inflammatory burden of COVID-19 on the endothelial network, was recreated in vitro, by exposing human pulmonary microvascular endothelial cells (HPMVEC) to media supplemented with serum from COVID-19 affected individuals (sera were acquired from patients with COVID-19 infection that eventually died. Sera was isolated from blood collected at admission to the Intensive Care Unit of the Hospital of the University of Pennsylvania). Endothelial activation, inflammation and cell death were assessed in HPMVEC treated with serum either from patients with COVID-19 or from healthy individuals. Activation was monitored by measuring NOX2 activation (Rac1 translocation) and ROS production; inflammation (or appearance of a pro-inflammatory phenotype) was monitored by measuring the induction of moieties such as intercellular adhesion molecule (ICAM-1), P-selectin and the NLRP3 inflammasome; cell death was measured via SYTOX™ Green assays. RESULTS: Endothelial activation (i.e., NOX2 activation and subsequent ROS production) and cell death were significantly higher in the COVID-19 model than in healthy samples. When HPMVEC were pre-treated with the novel peptide PIP-2, which blocks NOX2 activation (via inhibition of Ca2+-independent phospholipase A2, aiPLA2), significant abrogation of ROS was observed. Endothelial inflammation and cell death were also significantly blunted. CONCLUSIONS: The endothelium is activated during COVID-19 via cytokine storm-driven NOX2-ROS activation, which causes a pro-inflammatory phenotype. The concept of endothelial NOX2-ROS production as a unifying pathophysiological axis in COVID-19 raises the possibility of using PIP-2 to maintain vascular health.


Subject(s)
COVID-19 , Endothelial Cells , NADPH Oxidase 2 , Reactive Oxygen Species , SARS-CoV-2 , Signal Transduction , Humans , COVID-19/metabolism , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , SARS-CoV-2/physiology , NADPH Oxidase 2/metabolism , Endothelium, Vascular/metabolism , Lung/pathology , Lung/metabolism , Lung/virology , Lung/blood supply , Peptides/metabolism , Intercellular Adhesion Molecule-1/metabolism
7.
Int J Surg ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704642

ABSTRACT

OBJECTIVES: The absence of non-invasive biomarkers for the early diagnosis of colorectal cancer (CRC) has contributed to poor prognosis. Extracellular vesicles (EVs) have emerged as promising candidates for cancer monitoring using liquid biopsy. However, the complexity of EVs isolation procedures and absence of clear targets for detecting serum-derived EVs have hindered the clinical application of EVs in early CRC diagnosis. METHODS: In the discovery phase, we conducted a comprehensive 4D-DIA proteomic analysis of serum-derived EVs samples from 37 individuals, performing an initial screening of EVs surface proteins. In the technical validation phase, we developed an extraction-free CRC-EVArray microarray to assess the expression of these potential EVs surface proteins in a multicenter study comprising 404 individuals. In the application phase, we evaluated the diagnostic efficacy of the CRC-EVArray model based on machine-learning algorithms. RESULTS: Through 4D-DIA proteomic analysis, we identified 7 potential EVs surface proteins showing significantly differential expression in CRC patients compared to healthy controls. Utilizing our developed high-throughput CRC-EVArray microarray, we further confirmed the differential expression of 3 EVs surface proteins, FIBG, PDGF-ß and TGF-ß, in a large sample population. Moreover, we established an optimal CRC-EVArray model using the NNET algorithm, demonstrating superior diagnostic efficacy with an AUC of 0.882 in the train set and 0.937 in the test set. Additionally, we predicted the functions and potential origins of these EVs-derived proteins through a series of multi-omics approaches. CONCLUSIONS: Our systematic exploration of surface protein expression profiles on serum-derived EVs has identified FIBG, PDGF-ß, and TGF-ß as novel diagnostic biomarkers for CRC. And the development of CRC-EVArray diagnostic model based on these findings provided an effective tool for the large-scale CRC screening, thus facilitating its translation into clinical practice.

8.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664694

ABSTRACT

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Subject(s)
Camellia sinensis , Circadian Rhythm , Photosynthesis , Photosynthesis/genetics , Camellia sinensis/genetics , Camellia sinensis/physiology , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multigene Family , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Photoperiod
9.
Oecologia ; 205(1): 69-80, 2024 May.
Article in English | MEDLINE | ID: mdl-38683388

ABSTRACT

Hard limestone substrates, which are extensively distributed, are believed to exacerbate drought and increase the difficulty of restoration in vulnerable karst regions. Fissures in such substrates may alleviate the negative effect of drought on plants, but the underlying mechanisms remain poorly understood. In a two-way factorial block design, the growth and photosynthesis of 2-year-old Phoebe zhennan seedlings were investigated in two water availabilities (high versus low) and three stimulated fissure habitat groups (soil, soil-filled fissure and non-soil-filled fissure). Moreover, the fissure treatments included both small and big fissures. Compared to the soil group, the non-soil-filled fissure group had decreased the total biomass, root biomass, total root length, and the root length of fine roots in the soil layer at both water availabilities, but increased net photosynthetic rate (Pn) and retained stable water use efficiency (WUE) at low water availability. However, there were no significant differences between the soil-filled fissure group and soil group in the biomass accumulation and allocation as well as Pn. Nevertheless, the SF group decreased the root distribution in total and in the soil layer, and also increased WUE at low water availability. Across all treatments, fissure size had no effect on plant growth or photosynthesis. Karst fissures filled with soil can alleviate drought impacts on plant root growth, which involves adjusting root distribution strategies and increasing water use efficiency. These results suggest that rock fissures can be involved in long-term plant responses to drought stress and vegetation restoration in rocky mountain environments under global climate change.


Subject(s)
Droughts , Photosynthesis , Soil , Biomass , Water , Plant Roots/growth & development , Ecosystem
10.
New Phytol ; 243(5): 1724-1741, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38509454

ABSTRACT

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.


Subject(s)
Gene Expression Regulation, Plant , Gene Silencing , Oryza , Plant Proteins , Transgenes , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Mutation/genetics , Protein Domains , Haplotypes/genetics , DNA Methylation/genetics , Protein Binding , Plants, Genetically Modified , Alleles
11.
Anal Chim Acta ; 1292: 342267, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309849

ABSTRACT

The content of total polar material (TPM) is considered as a comprehensive indicator to evaluate the quality of edible oils which should be discarded and no longer be used when TPM content exceeding 27 %. Nevertheless, there is currently a lack of a convenient and efficient TPM detection method, which is a meaningful challenge. With the increase of TPM content, the viscosity of frying oil grows, and the two maintain a satisfactory positive correlation. Consequently, an "off-on" fluorescence probe TCF-PR method based on viscosity-response has been developed. There exists a good linear relationship between the fluorescence intensity of the probe and the TPM content of soybean oil ((R2 = 0.9936) and salad oil (R2 = 0.9878), accompanying with the advantage of fast response (3 s), which means the rapid detection of TPM can be realized to determine the quality of frying oil in the field of food safety.


Subject(s)
Cooking , Plant Oils , Fluorescence , Viscosity , Hot Temperature
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123999, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38340449

ABSTRACT

Rhodamine derivatives possessing spiroring-closing structures exhibit colorlessness, while the induction of spiroring-opening by metal ions results in notable color changes, rendering them as ideal platform for the development of functional probes with broad applications. However, the spiroring-closing form of rhodamine-based probes exhibits limited water solubility due to its neutral character, necessitating the incorporation of organic solvents to enhance solubility, which may adversely affect the natural system. Designing rhodamine probes with high solubility in both the zwitterionic and neutral form is of utmost importance and presents a significant challenge. This study presents a sulfone-rhodamine-based probe that exhibits good water solubility both in the spiroring opening and closing for detecting Hg2+. Upon the presence of Hg2+, the color undergoes a noticeable change from colorless to pink, with a response time of less than 1 min. probe 1 demonstrates an excellent linear relationship with Hg2+ concentrations within the range of 0-8 µM, and achieves a detection limit is 17.26 nM. The effectiveness of probe 1 was confirmed through the analysis of mercury ions in cosmetic products. Utilizing this probe, test paper strips have been developed to enhance the portability of Hg2+ detection naked eyes.


Subject(s)
Cosmetics , Mercury , Rhodamines/chemistry , Mercury/analysis , Water/chemistry , Fluorescent Dyes/chemistry , Solubility , Ions/analysis , Cosmetics/analysis , Spectrometry, Fluorescence
13.
BMC Cardiovasc Disord ; 24(1): 29, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172720

ABSTRACT

BACKGROUND: Patients with nonischemic dilated cardiomyopathy (NIDCM) are prone to arrhythmias, and the cause of mortality in these patients is either end-organ dysfunction due to pump failure or malignant arrhythmia-related death. However, the identification of patients with NIDCM at risk of malignant ventricular arrhythmias (VAs) is challenging in clinical practice. The aim of this study was to evaluate whether cardiovascular magnetic resonance feature tracking (CMR-FT) could help in the identification of patients with NIDCM at risk of malignant VAs. METHODS: A total of 263 NIDCM patients who underwent CMR, 24-hour Holter electrocardiography (ECG) and inpatient ECG were retrospectively evaluated. The patients with NIDCM were allocated to two subgroups: NIDCM with VAs and NIDCM without VAs. From CMR-FT, the global peak radial strain (GPRS), global longitudinal strain (GPLS), and global peak circumferential strain (GPCS) were calculated from the left ventricle (LV) model. We investigated the possible predictors of NIDCM combined with VAs by univariate and multivariate logistic regression analyses. RESULTS: The percent LGE (15.51 ± 3.30 vs. 9.62 ± 2.18, P < 0.001) was higher in NIDCM patients with VAs than in NIDCM patients without VAs. Furthermore, the NIDCM patients complicated with VAs had significantly lower GPCS than the NIDCM patients without VAs (- 5.38 (- 7.50, - 4.22) vs.-9.22 (- 10.73, - 8.19), P < 0.01). Subgroup analysis based on LGE negativity showed that NIDCM patients complicated with VAs had significantly lower GPRS, GPCS, and GPLS than NIDCM patients without VAs (P < 0.05 for all). Multivariate analysis showed that both GPCS and %LGE were independent predictors of NIDCM combined with VAs. CONCLUSIONS: CMR global strain can be used to identify NIDCM patients complicated with VAs early, specifically when LGE is not present. GPCS < - 13.19% and %LGE > 10.37% are independent predictors of NIDCM combined with VAs.


Subject(s)
Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/pathology , Myocardium/pathology , Retrospective Studies , Magnetic Resonance Imaging, Cine , Prognosis , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/complications , Magnetic Resonance Spectroscopy , Contrast Media , Predictive Value of Tests
14.
Cardiology ; 149(2): 95-103, 2024.
Article in English | MEDLINE | ID: mdl-37992694

ABSTRACT

INTRODUCTION: Mortality from acute myocardial infarction (AMI) remains substantial. The current study is aimed at developing a novel simple risk score for AMI. METHODS: The Coronary Artery Tree description and Lesion EvaluaTion (CatLet) extended validation trial (ChiCTR2000033730) and the CatLet validation trial (ChiCTR-POC-17013536), both being registered with chictr.org, served as the derivation and validation datasets, respectively. Both datasets included 1,018 and 308 patients, respectively. They all suffered from AMI and underwent percutaneous intervention (PCI). The endpoint was 4-year all-cause death. Lasso regression analysis was used for covariate selection and coefficient estimation. RESULTS: Of 26 candidate predictor variables, the four strongest predictors for 4-year mortality were included in this novel risk score with an acronym of BACEF (serum alBumin, Age, serum Creatinine, and LVEF). This score was well calibrated and yielded an AUC (95% CI) statistics of 0.84 (0.80-0.87) in internal validation, 0.89 (0.83-0.95) in internal-external (temporal) validation, and 0.83 (0.77-0.89) in external validation. Notably, it outperformed the ACEF, ACEF II, GRACE scores with respect to 4-year mortality prediction. CONCLUSION: A simple risk score for 4-year mortality risk stratification was developed, extensively validated, and calibrated in patients with AMI. This novel BACEF score may be a useful risk stratification tool for patients with AMI.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/adverse effects , Myocardial Infarction/etiology , Risk Factors , Creatinine , Risk Assessment/methods
15.
Soft Robot ; 11(1): 131-139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37616548

ABSTRACT

Origami provides an opportunity to construct a wide range of 3D functional structures by folding a flat sheet. It can be used to develop various soft functional robots by combining soft smart actuators. However, a simple and an effective model that can address the challenging problem of designing origami patterns to connect origami design with robotics is lacking, thereby greatly increasing the threshold of soft origami robots and hindering its development. This study proposes an easy-to-use inverse origami design model to generate the flat crease pattern from the desired folded shape automatically while simulating origami morphing by simply providing the shape parameters or 2D shape graphics. This method overcomes the difficulty of origami design and enables a close connection between origami and robotics. Through this method, various soft origami robots can be developed with low design complexity and time cost to achieve different functions, thereby promoting the development of soft origami robots.

16.
Expert Opin Drug Saf ; 23(3): 277-286, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37642368

ABSTRACT

BACKGROUND: This study investigates the biological functions of Stathmin1 (STMN1) involving drug resistance and cell proliferation in multiple myeloma (MM) and its related mechanisms. METHODS: Bone marrow aspirates were collected from 20 MM patients, and the bone marrow mononuclear cells (BMMCs) were separated by Ficoll-Hypaque density gradient centrifugation. Blood samples of 20 patients with monoclonal gammopathy of undetermined significance (MGUS) and 20 healthy donors were collected. Normal plasma cells sorted from the peripheral blood of MGUS patients and healthy subject as controls. Two bortezomib (BTZ)-resistant MM cell lines were established, namely NCI-H929/BTZ and KM3/BTZ cells, and then transfected with lentiviruses packaging sh-STMN1 to knock down STMN1 level in BTZ-resistant cells. Expression of STMN1 was assessed by RT-qPCR and western blotting. CCK-8 assays were performed to assess 50% growth inhibition (IC50) values. Green fluorescent protein in BTZ-resistant cells infected with lentiviruses was observed by fluorescence microscopy. Cell viability, proliferation, cell cycle, and apoptosis were evaluated through MTT assays, colony formation assays, flow cytometry analyses, and TUNEL staining. RESULTS: STMN1 was upregulated in MM cells and bone marrow aspirates of MM patients. Additionally, STMN1 depletion attenuated BTZ resistance in MM cells. Moreover, downregulation of STMN1 limited the malignant phenotypes of BTZ-resistant cells. Mechanistically, the PI3K/Akt signaling was inactivated by STMN1 downregulation in BTZ-resistant cells. CONCLUSION: STMN1 silencing inhibits cell proliferation and BTZ resistance in MM by inactivating the PI3K/Akt signaling.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Multiple Myeloma/genetics , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinases/therapeutic use , Proto-Oncogene Proteins c-akt , Cell Line, Tumor , Drug Resistance, Neoplasm , Cell Proliferation , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Stathmin/genetics , Stathmin/pharmacology
17.
Chinese Journal of School Health ; (12): 178-182, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012463

ABSTRACT

Objective@#To explore the association between processed food consumption and anxiety symptoms among college students in Yunnan Province, so as to provide a reference for the prevention and treatment of anxiety symptoms in this population.@*Methods@#A cluster random sample of 2 515 first year students from two universities in Yunnan Province was selected to carry out a longitudinal investigation which included a baseline survey (November 2021, T1) and three follow up visits (June 2022, T2; November 2022, T3; June 2023, T4). The food frequency questionnaire was administered to assess processed food consumption, and the Depression Anxiety Stress Scale-21 (DASS-21, Chinese version) was used to evaluate anxiety symptoms. A generalized estimation equation model was used to analyze the relationship between processed food consumption and anxiety symptoms.@*Results@#The detection rates of T1-T4 anxiety symptoms among college students in Yunnan Province were 29.70%, 36.70%, 37.69% and 38.73 %, respectively, and the corresponding anxiety symptom scores were 4(0,8), 4(0,10), 4(0,12), 2(0,14). After controlling for demographic variables and confounding factors in the generalized estimation equation model, a statistically significant association was found between consumption of carbonated beverages ( β=0.06, 95%CI =0.03-0.08), and other processed snacks ( β= 0.04 , 95%CI =0.01-0.07) ( P <0.05). The stratified analysis by gender showed that the consumption of carbonated beverages ( β=0.08, 95%CI =0.05-0.12) and fast food ( β=0.03, 95%CI =0.00-0.06) was significantly associated with anxiety symptoms in female college students ( P <0.05). There was no significant association between processed food consumption and anxiety symptoms in male college students ( P >0.05).@*Conclusions@#Processed food consumption by college students in Yunnan Province may increase the risk of anxiety symptoms, particularly among female students. There is a need to strengthen guidance in respect to processed food consumption, so as to prevent and treat anxiety symptoms.

18.
Chinese Journal of School Health ; (12): 554-559, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016886

ABSTRACT

Objective@#To analyze the longitudinal association between mobile phone dependence and depressive symptoms in college students, so as to provide a theoretical basis for psychological health education among college students.@*Methods@#From November 2021 to June 2023, 2 515 first year students from 2 universities in Yunnan Province were surveyed with a questionnaire by a cluster random sampling method, including baseline survey (November 2021, T1) and three follow up visits (June 2022, T2; November 2022, T3; June 2023, T4). The Self rating Questionnaire for Adolescent Problematic Mobile Phone Use and the Depression Anxiety Stress Scales-21 (DASS-21) were used to evaluate mobile phone dependence and depressive symptoms of college students. The χ 2 test was used to analyze the difference in depressive symptoms among different demographic groups, and a generalized estimation equation model was established to analyze the association between mobile phone dependence symptoms and depressive symptoms.@*Results@#The detection rates of depressive symptoms among university students in Yunnan Province at time points T1, T2, T3, and T4 were 23.02%, 33.36%, 34.79% and 35.51%, respectively. There were statistically significant differences in the detection rates of depressive symptoms among college students with different sacademic burden (T1, T2, T3, T4), different number of close friends (T1, T2, T3), as well as their father s educational level (T1), mothers educational level (T2, T4), gender (T4), major (T3, T4), education (T2, T3, T4), family residency (T1, T2), and family economic conditions (T1, T2, T4) ( χ 2= 59.68 , 49.38, 16.70, 39.31; 55.35, 26.01, 16.69; 10.22; 14.87, 11.51; 14.90; 27.81, 50.28; 9.75, 7.42, 24.76; 6.06, 4.47 ; 15.88, 14.58, 15.85, P < 0.05 ). After controlling for demographic variables and confounding factors in the generalized estimation equation model, mobile phone dependence ( β =0.11), withdrawal symptoms of mobile phone dependence ( β =0.14), and the physical and mental effects of mobile phone dependence ( β =0.14) were all positively correlated with depressive symptoms ( P <0.01). Further gender analysis showed that depressive symptoms in both boys ( β =0.13, 0.13, 0.18) and girls ( β =0.10, 0.13, 0.13 ) were associated with mobile phone dependence, withdrawal symptoms of mobile phone dependence and the physical and mental effects of mobile phone dependence ( P <0.01).@*Conclusions@#Depressive symptoms of college students are positively correlated with mobile phone dependence, and family economic conditions, academic burden and number of close friends are factors that continued to affect depressive symptoms. College students should be guided to pay attention to the impact of excessive use of mobile phones on their physical and mental health, use mobile phones reasonably to reduce the incidence of depressive symptoms among college students.

19.
FASEB J ; 38(1): e23397, 2024 01.
Article in English | MEDLINE | ID: mdl-38149908

ABSTRACT

Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.


Subject(s)
Parasites , Toxoplasma , Animals , Mice , Dihydroorotase , Pyrimidines/pharmacology , Uracil , Uridine Monophosphate , Mammals
20.
Front Microbiol ; 14: 1276954, 2023.
Article in English | MEDLINE | ID: mdl-38029124

ABSTRACT

Introduction: Glucose level is related to antibiotic resistance. However, underlying mechanisms are largely unknown. Methods: Since glucose transport is performed by phosphotransferase system (PTS) in bacteria, pts promoter-deleted K12 (Δpts-P) was used as a model to investigate effect of glucose metabolism on antibiotic resistance. Gas chromatography-mass spectrometry based metabolomics was employed to identify a differential metabolome in Δpts-P compared with K12, and with glucose as controls. Results: Δpts-P exhibits the resistance to ß-lactams and aminoglycosides but not to quinolones, tetracyclines, and macrolide antibiotics. Inactivated pyruvate cycle was determined as the most characteristic feature in Δpts-P, which may influence proton motive force (PMF), reactive oxygen species (ROS), and nitric oxide (NO) that are related to antibiotic resistance. Thus, they were regarded as three ways for the following study. Glucose promoted PMF and ß-lactams-, aminoglycosides-, quinolones-mediated killing in K12, which was inhibited by carbonyl cyanide 3-chlorophenylhydrazone. Exogenous glucose did not elevated ROS in K12 and Δpts-P, but the loss of pts promoter reduced ROS by approximately 1/5, which was related to antibiotic resistance. However, NO was neither changed nor related to antibiotic resistance. Discussion: These results reveal that pts promoter regulation confers antibiotic resistance via PMF and ROS in Escherichia coli.

SELECTION OF CITATIONS
SEARCH DETAIL