Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Legal Med ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844616

ABSTRACT

Cardiac arrhythmia is currently considered to be the direct cause of death in a majority of sudden unexplained death (SUD) cases, yet the genetic predisposition and corresponding endophenotypes contributing to SUD remain incompletely understood. In this study, we aimed to investigate the involvement of Coenzyme Q (CoQ) deficiency in SUD. First, we re-analyzed the exome sequencing data of 45 SUD and 151 sudden infant death syndrome (SIDS) cases from our previous studies, focusing on previously overlooked genetic variants in 44 human CoQ deficiency-related genes. A considerable proportion of the SUD (38%) and SIDS (37%) cases were found to harbor rare variants with likely functional effects. Subsequent burden testing, including all rare exonic and untranslated region variants identified in our case cohorts, further confirmed the existence of significant genetic burden. Based on the genetic findings, the influence of CoQ deficiency on electrophysiological and morphological properties was further examined in a mouse model. A significantly prolonged PR interval and an increased occurrence of atrioventricular block were observed in the 4-nitrobenzoate induced CoQ deficiency mouse group, suggesting that CoQ deficiency may predispose individuals to sudden death through an increased risk of cardiac arrhythmia. Overall, our findings suggest that CoQ deficiency-related genes should also be considered in the molecular autopsy of SUD.

2.
mSystems ; : e0039924, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934545

ABSTRACT

The skin microbiome plays a pivotal role in human health by providing protective and functional benefits. Furthermore, its inherent stability and individual specificity present novel forensic applications. These aspects have sparked considerable research enthusiasm among scholars across various fields. However, the selection of specific 16S rRNA hypervariable regions for skin microbiome studies is not standardized and should be validated through extensive research tailored to different research objectives and targeted bacterial taxa. Notably, third-generation sequencing (TGS) technology leverages the full discriminatory power of the 16S gene and enables more detailed and accurate microbial community analyses. Here, we conducted full-length 16S sequencing of 141 skin microbiota samples from multiple human anatomical sites using the PacBio platform. Based on this data, we generated derived 16S sub-region data through an in silico experiment. Comparisons between the 16S full-length and the derived variable region data revealed that the former can provide superior taxonomic resolution. However, even with full 16S gene sequencing, limitations arise in achieving 100% taxonomic resolution at the species level for skin samples. Additionally, the capability to resolve high-abundance bacteria (TOP30) at the genus level remains generally consistent across different 16S variable regions. Furthermore, the V1-V3 region offers a resolution comparable with that of full-length 16S sequences, in comparison to other hypervariable regions studied. In summary, while acknowledging the benefits of full-length 16S gene analysis, we propose the targeting of specific sub-regions as a practical choice for skin microbial research, especially when balancing the accuracy of taxonomic classification with limited sequencing resources, such as the availability of only short-read sequencing or insufficient DNA.IMPORTANCESkin acts as the primary barrier to human health. Considering the different microenvironments, microbial research should be conducted separately for different skin regions. Third-generation sequencing (TGS) technology can make full use of the discriminatory power of the full-length 16S gene. However, 16S sub-regions are widely used, particularly when faced with limited sequencing resources including the availability of only short-read sequencing and insufficient DNA. Comparing the 16S full-length and the derived variable region data from five different human skin sites, we confirmed the superiority of the V1-V3 region in skin microbiota analysis. We propose the targeting of specific sub-regions as a practical choice for microbial research.

3.
Mol Genet Genomics ; 299(1): 9, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374461

ABSTRACT

Currently, the most commonly used method for human identification and kinship analysis in forensic genetics is the detection of length polymorphism in short tandem repeats (STRs) using polymerase chain reaction (PCR) and capillary electrophoresis (CE). However, numerous studies have shown that considerable sequence variations exist in the repeat and flanking regions of the STR loci, which cannot be identified by CE detection. Comparatively, massively parallel sequencing (MPS) technology can capture these sequence differences, thereby enhancing the identification capability of certain STRs. In this study, we used the ForenSeq™ DNA Signature Prep Kit to sequence 58 STRs and 94 individual identification SNPs (iiSNPs) in a sample of 220 unrelated individuals from the Eastern Chinese Han population. Our aim is to obtain MPS-based STR and SNP data, providing further evidence for the study of population genetics and forensic applications. The results showed that the MPS method, utilizing sequence information, identified a total of 486 alleles on autosomal STRs (A-STRs), 97 alleles on X-chromosome STRs (X-STRs), and 218 alleles on Y-chromosome STRs (Y-STRs). Compared with length polymorphism, we observed an increase of 260 alleles (157, 31, and 72 alleles on A-STRs, X-STRs, and Y-STRs, respectively) across 36 STRs. The most substantial increments were observed in DYF387S1 and DYS389II, with increases of 287.5% and 250%, respectively. The most increment in the number of alleles was found at DYF387S1 and DYS389II (287.5% and 250%, respectively). The length-based (LB) and sequence-based (SB) combined random match probability (RMP) of 27 A-STRs were 6.05E-31 and 1.53E-34, respectively. Furthermore, other forensic parameters such as total discrimination power (TDP), cumulative probability of exclusion of trios (CPEtrio), and duos (CPEduo) were significantly improved when using the SB data, and informative data were obtained for the 94 iiSNPs. Collectively, these findings highlight the advantages of MPS technology in forensic genetics, and the Eastern Chinese Han genetic data generated in this study could be used as a valuable reference for future research in this field.


Subject(s)
DNA Fingerprinting , Ethnicity , Humans , DNA Fingerprinting/methods , Ethnicity/genetics , Genetics, Population , Polymorphism, Single Nucleotide/genetics , Microsatellite Repeats/genetics , High-Throughput Nucleotide Sequencing/methods , China , DNA , Sequence Analysis, DNA/methods
4.
Forensic Sci Int Genet ; 69: 102979, 2024 03.
Article in English | MEDLINE | ID: mdl-38043150

ABSTRACT

Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.


Subject(s)
Body Fluids , Humans , RNA, Messenger/genetics , RNA , Genetic Markers , DNA/genetics , Forensic Genetics/methods , Semen , Saliva
5.
Fa Yi Xue Za Zhi ; 39(5): 465-470, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-38006266

ABSTRACT

OBJECTIVES: To explore the feasibility of genetic marker detection of semen-specific coding region single nucleotide polymorphism (cSNP) based on SNaPshot technology in semen stains and mixed body fluid identification. METHODS: Genomic DNA (gDNA) and total RNA were extracted from 16 semen stains and 11 mixtures composed of semen and venous blood, and the total RNA was reverse transcribed into complementary DNA (cDNA). The cSNP genetic markers were screened on the validated semen-specific mRNA coding genes. The cSNP multiplex detection system based on SNaPshot technology was established, and samples were genotyped by capillary electrophoresis (CE). RESULTS: A multiplex detection system containing 5 semen-specific cSNPs was successfully established. In 16 semen samples, except the cSNP located in the TGM4 gene showed allele loss in cDNA detection results, the gDNA and cDNA typing results of other cSNPs were highly consistent. When detecting semen-venous blood mixtures, the results of cSNP typing detected were consistent with the genotype of semen donor and were not interfered by the genotype of venous blood donor. CONCLUSIONS: The method of semen-specific cSNPs detection by SNaPshot technology method can be applied to the genotyping of semen (stains) and provide information for determining the origin of semen in mixed body fluids (stains).


Subject(s)
Body Fluids , Semen , Genetic Markers , Polymorphism, Single Nucleotide , DNA, Complementary/genetics , RNA, Messenger/genetics , DNA , Saliva , Forensic Genetics/methods
6.
Forensic Sci Res ; 8(1): 70-78, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37415794

ABSTRACT

Y-chromosome short tandem repeats (Y-STRs) have a unique role in forensic investigation. However, low-medium mutating Y-STRs cannot meet the requirements for male lineage differentiation in inbred populations, whereas rapidly mutating (RM) high-resolution Y-STRs might cause unexpected exclusion of paternal lineages. Thus, combining Y-STRs with low and high mutation rates helps to distinguish male individuals and lineages in family screening and analysis of genetic relationships. In this study, a novel 6-dye, 41-plex Y-STR panel was developed and validated, which included 17 loci from the Yfiler kit, nine RM Y-STR loci, 15 low-medium mutating Y-STR loci, and three Y-InDels. Developmental validation was performed for this panel, including size precision testing, stutter analysis, species specificity analysis, male specificity testing, sensitivity testing, concordance evaluation, polymerase chain reaction inhibitors analysis, and DNA mixture examination. The results demonstrated that the novel 41-plex Y-STR panel, developed in-house, was time efficient, accurate, and reliable. It showed good adaptability to directly amplify a variety of case-type samples. Furthermore, adding multiple Y-STR loci significantly improved the system's ability to distinguish related males, making it highly informative for forensic applications. In addition, the data obtained were compatible with the widely used Y-STR kits, facilitating the search and construction of population databases. Moreover, the addition of Y-Indels with short amplicons improves the analyses of degraded samples. Key Points: A novel multiplex comprising 41 Y-STR and 3 Y-InDel was developed for forensic application.The multiplex included rapidly mutating Y-STRs and low-medium mutating Y-STRs, which is compatible with many commonly used Y-STR kits.The multiplex is a powerful tool for distinguishing related males, familial searching, and constructing DNA databases.

7.
Forensic Sci Int Genet ; 62: 102803, 2023 01.
Article in English | MEDLINE | ID: mdl-36368220

ABSTRACT

Y-chromosome single nucleotide polymorphism (Y-SNP) shows great variation in geographical distribution and population heterogeneity and can be used to map population genetics around the world. Massive parallel sequencing (MPS) methodology enables high-resolution Y-SNP haplogrouping for a certain male and is widely used in forensic genetics and evolutionary studies. In this present study, we used MPS to develop a customized 381 Y-SNP panel (SifaMPS 381 Y-SNP panel) to investigate the basic structure and subbranches of the haplogroup tree of the Chinese populations. The SifaMPS 381 Y-SNP panel covers all the Y-SNPs from our previously designed 183 Y-SNP panel and additional SNPs under the predominant haplogroups in the Chinese populations based on certain criteria. We also evaluated the sequencing matrix, concordance, sensitivity, repeatability of this panel and the ability to analyze mixed and case-type samples based on the Illumina MiSeq System. The results demonstrated that the novel MPS Y-SNP panel possessed good sequencing performance and generated accurate Y-SNP genotyping results. Although the recommended DNA input was greater than 1.25 ng, we observed that a lower DNA amount could still be used to analyze haplogroups correctly. In addition, this panel could handle mixed samples and common case-type samples and had higher resolution among Chinese Han males than previously reported. In conclusion, the SifaMPS 381 Y-SNP panel showed an overall good performance and offers a better choice for Y-SNP haplogrouping of the Chinese population, thereby facilitating paternal lineage classification, familial searching and other forensic applications.


Subject(s)
Chromosomes, Human, Y , Polymorphism, Single Nucleotide , Humans , Male , Haplotypes , East Asian People , Genetics, Population , DNA , High-Throughput Nucleotide Sequencing/methods
8.
Fa Yi Xue Za Zhi ; 39(6): 557-563, 2023 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-38228474

ABSTRACT

OBJECTIVES: To explore the possibility of using human skin and oral microorganisms to estimate the geographic origin of an individual through the sequencing analysis of bacterial 16S rRNA gene. METHODS: Microbial DNA was extracted from the palm and oral microorganisms of the Han population in Shanghai and Chifeng, Inner Mongolia, and the composition and diversity of the microbiota were analyzed by full-length 16S rRNA gene sequencing. Then, differential species were screened and a geographic location prediction model was constructed. RESULTS: The compositions of palm and oral microorganisms between Shanghai and Chifeng samples were both different. The abundance and uniformity of palm side skin microorganisms were higher in Chifeng samples than in Shanghai samples, while there was no significant difference in oral microorganisms. Permutational multivariate analysis of variance (PERMANOVA) confirmed that the ß-diversity between the samples from the two places were statistically significant, and the coefficients of determination (R2) for skin and oral samples were 0.129 and 0.102, respectively. Through principal co-ordinates analysis (PCoA), the samples from the two places could be preliminarily distinguished. The predictive model had the accuracies of 0.90 and 0.83 for the geographic origin using the skin and oral samples, respectively. CONCLUSIONS: There are differences in the compositions of palm and oral microbiota between Han populations in Shanghai and Chifeng. The prediction model constructed by the random forest algorithm can trace the unknown individuals from the above two places.


Subject(s)
Microbiota , Mouth , Skin , Humans , China , DNA, Bacterial/genetics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Forensic Genetics , High-Throughput Nucleotide Sequencing , Mouth/microbiology
9.
Forensic Sci Res ; 7(3): 490-497, 2022.
Article in English | MEDLINE | ID: mdl-36353314

ABSTRACT

Hallucinogenic mushroom is a kind of toxic strain containing psychoactive tryptamine substances such as psilocybin, psilocin and ibotenic acid, etc. The mushrooms containing hallucinogenic components are various, widely distributed and lack of standard to define, which made a great challenge to identification. Traditional identification methods, such as morphology and toxicology analysis, showed shortcomings in old or processed samples, while the DNA-based identification of hallucinogenic mushrooms would allow to identify these samples due to the stability of DNA. In this paper, four primer sets are designed to target Psilocybe cubensis DNA for increasing resolution of present identification method, and the target markers include largest subunit of RNA polymerase II (marked as PC-R1), psilocybin-related phosphotransferase gene (marked as PC-PT), glyceraldehyde 3-phosphate dehydrogenase (marked as PC-3) and translation EF1α (marked as PC-EF). Real-time PCR with high-resolution melting (HRM) assay were used for the differentiation of the fragments amplified by these primer sets, which were tested for specificity, reproducibility, sensitivity, mixture analysis and multiplex PCR. It was shown that the melting temperatures of PC-R1, PC-PT, PC-3 and PC-EF of P. cubensis were (87.93 ± 0.12) °C, (82.21 ± 0.14) °C, (79.72 ± 0.12) °C and (80.11 ± 0.19) °C in our kinds of independent experiments. Significant HRM characteristic can be shown with a low concentration of 62.5 pg/µL DNA sample, and P. cubensis could be detected in mixtures with Homo sapiens or Cannabis sativa. In summary, the method of HRM analysis can quickly and specifically distinguish P. cubensis from other species, which could be utilized for forensic science, medical diagnosis and drug trafficking cases. Supplemental data for this article are available online at https://doi.org/10.1080/20961790.2021.1875580.

10.
Fa Yi Xue Za Zhi ; 38(4): 500-506, 2022 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-36426695

ABSTRACT

OBJECTIVES: To study the genetic polymorphism and population genetic parameters of 16 X-STR loci in Xinjiang Uygur population. METHODS: The Goldeneye® DNA identification system 17X was used to amplify 16 X-STR loci in 502 unrelated individuals (251 females and 251 males). The amplified products were detected by 3130xl genetic analyzer. Allele frequencies and population genetic parameters were analyzed statistically. The genetic distances between Uygur and other 8 populations were calculated. Multidimensional scaling and phylogenetic tree were constructed based on genetic distance. RESULTS: In the 16 X-STR loci, a total of 67 alleles were detected in 502 Xinjiang Uygur unrelated individuals. The allele frequencies ranged from 0.001 3 to 0.572 4. PIC ranged from 0.568 8 to 0.855 3. The cumulative discrimination power in females and males were 0.999 999 999 999 999 and 0.999 999 999 743 071, respectively. The cumulative mean paternity exclusion chance in trios and in duos were 0.999 999 997 791 859 and 0.999 998 989 000 730, respectively. The genetic distance between Uygur population and Kazakh population was closer, and the genetic distance between Uygur and Han population was farther. CONCLUSIONS: The 16 X-STR loci are highly polymorphic and suitable for identification in Uygur population, which can provide a powerful supplement for the study of individual identification, paternity identification and population genetics.


Subject(s)
Chromosomes, Human, X , Ethnicity , Microsatellite Repeats , Polymorphism, Genetic , Female , Humans , Male , DNA, Ribosomal , Ethnicity/genetics , Gene Frequency , Paternity , Phylogeny , Chromosomes, Human, X/genetics
11.
Front Genet ; 13: 988223, 2022.
Article in English | MEDLINE | ID: mdl-36276985

ABSTRACT

Novel genetic marker microhaplotype has led to an upsurge in forensic genetic research. This study established a 163 microhaplotype (MH) multiplex assay based on next-generation sequencing (NGS) and evaluated the assay's performance and applicability. Our results showed that the 163 MH assay was accurate, repeatable and reliable, and could distinguish between African, European-American, Southern Asia and Eastern Asia populations. Among the 163 MH makers, 48 MHs with Ae > 3.0 in China Eastern Han were selected and confirmed to be highly polymorphic, with a combined power of discrimination of 1-8.26 × 10-44 and the combined power of exclusion in duos and trios of 1-1.26 × 10-8 and 1-8.27 × 10-16, respectively. Moreover, the mixture study demonstrated the realizability of the MHs in deconvoluting mixtures with different proportions of two to five-person. In conclusion, our findings support the use of this MH assay for ancestry inference, human identification, paternity testing and mixture deconvolution in forensic research.

13.
Forensic Sci Res ; 7(2): 172-180, 2022.
Article in English | MEDLINE | ID: mdl-35784410

ABSTRACT

The Investigator 24plex QS Kit (QIAGEN, Hilden, Germany) is a 6-dye fluorescent chemistry short tandem repeat (STR) polymerase chain reaction (PCR) amplification system that simultaneously amplifies 20 of the expanded Combined DNA Index System (CODIS) core STR loci, SE33, DYS391, and the standard sex-determining locus, amelogenin, as well as two special internal performance quality sensor controls (QS1 and QS2), which are included in the primer mix to check the PCR performance. This study was designed to be a pilot evaluation of this STR-PCR kit in a Chinese Han population regarding the PCR conditions, sensitivity, precision, accuracy, repeatability, reproducibility, and concordance; tolerance to PCR inhibitors; applicability to real "forensic-type" samples; species specificity; mixture, balance and stutter analyses, and utility in a population investigation. The exhaustive validation studies demonstrated that the Investigator 24plex QS system is accurate, sensitive and robust for STR genotyping. In addition, these genetic markers in the population data in our study indicated that they can also be useful for forensic identification and paternity testing in the Chinese Han population.

14.
Fa Yi Xue Za Zhi ; 38(2): 231-238, 2022 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-35899512

ABSTRACT

OBJECTIVES: To construct a Felis catus STR loci multiplex amplification system and to evaluate its application value by testing the technical performance. METHODS: The published Felis catus STR loci data were reviewed and analyzed to select the STR loci and sex identification loci that could be used for Felis catus individual identification and genetic identification. The fluorescent labeling primers were designed to construct the multiplex amplification system. The system was validated for sensitivity, accuracy, balance, stability, species specificity, tissue identity and mixture analysis, and investigated the genetic polymorphisms in 145 unrelated Felis catus samples. RESULTS: Sixteen Felis catus autosomal STR loci and one sex determining region of Y (SRY) were successfully selected, and constructed a multiplex amplification system containing the above loci. The complete profile of all alleles could still be obtained when the amount of DNA template was as low as 0.25 ng. There was no specific amplification peak in other common animal samples. Population genetic surveys showed that total discrimination power (TDP) of the 16 STR loci was 1-3.57×10-20, the cumulative probability of exclusion (CPE) was 1-6.35×10-5 and the cumulative probability of matching was 3.61×10-20. CONCLUSIONS: The Felis catus STR multiplex amplification system constructed in this study is highly sensitive, species-specific, and accurate in typing results, which can provide an effective solution for Felis catus species identification, individual identification and kinship identification in the field of forensic science.


Subject(s)
Chromosomes, Human, Y , Polymorphism, Genetic , Alleles , Animals , Cats/genetics , DNA Fingerprinting/methods , DNA Primers , Humans , Microsatellite Repeats/genetics , Polymerase Chain Reaction/methods
15.
Fa Yi Xue Za Zhi ; 38(2): 267-279, 2022 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-35899518

ABSTRACT

In recent years, more and more forensic genetics laboratories have begun to apply massively parallel sequencing (MPS) technology, that is, next-generation sequencing (NGS) technology, to detect common forensic genetic markers, including short tandem repeat (STR), single nucleotide polymorphism (SNP), the control region or whole genome of mitochondrial DNA (mtDNA), as well as messenger RNA (mRNA), etc., for forensic practice, such as individual identification, kinship analysis, ancestry inference and body fluid identification. As the most widely used genetic marker in forensic genetics, STR is currently mainly detected by capillary electrophoresis (CE) platform. Compared with CE platform, MPS technology has the advantages of simultaneous detection of a large number of genetic markers, massively parallel detection of samples, the polymorphism of sequence detected by NGS makes STR have the advantages of higher resolution and system efficiency. However, MPS technology is expensive, there is no uniform standard so far, and there are problems such as how to integrate MPS-STR data with the existing CE-STR database. This review summarizes the current status of the application of MPS technology in the detection of STR genetic markers in forensic genetics, puts forward the main problems that need to be solved urgently, and prospects the application prospect of this technology in forensic genetics.


Subject(s)
High-Throughput Nucleotide Sequencing , Microsatellite Repeats , DNA Fingerprinting/methods , Forensic Genetics/methods , Genetic Markers , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Technology
16.
Front Plant Sci ; 13: 837945, 2022.
Article in English | MEDLINE | ID: mdl-35295633

ABSTRACT

In recent years, influenced by the legalization of Cannabis sativa in some countries and regions, the number of people who smoke or abuse C. sativa has continuously grown, cases of transnational C. sativa trafficking have also been increasing. Therefore, fast and accurate identification and source tracking of C. sativa have become urgent social needs. In this study, we developed a new 19-plex short tandem repeats (STRs) typing system for C. sativa, which includes 15 autosomal STRs (D02-CANN1, C11-CANN1, 4910, B01-CANN1, E07-CANN1, 9269, B05-CANN1, H06-CANN2, 5159, nH09, CS1, ANUCS 305, 3735, and ANUCS 302 and 9043), two X-chromosome STRs (ANUCS 501 and 1528), one sex-determining marker (DM016, on Y-chromosome), and a quality control marker (DM029, on autosome). The whole polymerase chain reaction (PCR) process could finish within 1 h, making the system suitable for fast detection. The PCR products were detected and separated with an Applied Biosystems 3500XL Genetic Analyser. Developmental validation studies indicated that the 19-plex typing system was accurate, reliable and sensitive, which could also deconvolute mixed C. sativa samples. Specifically, the sensitivity study showed that a full genotyping profile was obtainable with as low as 125 pg of C. sativa DNA. The species specificity study demonstrated that this multiplex has no cross-reactivity with common non C. sativa DNA. In the population study, a total of 162 alleles at 15 autosomal STRs and 14 alleles at two X-chromosome STRs were detected among 85 samples. The efficiency parameters, including the total discrimination power (TDP) and the combined power of exclusion (CPE) of the system, were calculated to exceed 0.999 999 999 999 988 and 0.998 455 889 684 078, respectively, further proving that the system could meet the needs of individual identification. To the extent of the known studies, this is the first study that included the C. sativa sex-determining marker. In conclusion, the developed new 19-plex STR typing system can successfully achieve the purposes of species identification, gender determination, and individual identification, which could be a powerful tool in tracing trade routes of particular drug syndicates or dealers or in linking certain C. sativa to a crime scene.

17.
Front Oncol ; 12: 800028, 2022.
Article in English | MEDLINE | ID: mdl-35223480

ABSTRACT

Personal identification using the tumor DNA not only plays an important role in postoperative tissue management but also might be the only accessible source of biological material in forensic identification. Short tandem repeat (STR) is the worldwide accepted forensic marker; however, widespread loss of heterozygosity (L) in tumor tissues challenges the personal identification using the conventional capillary electrophoresis (CE)-based STR typing system (CE-STR). Because the tumors are mixtures of tumor cells and basal cells, we inferred that every germline-originated allele should be detected if the detection method was sensitive enough. Next-generation sequencing (NGS) is known as a highly sensitive application, which might be a promising tool for tumor source identification. In the study, we genotyped and compared the STR results between the platforms, and we found that the concordance was only 91.43%. Higher sensitivity did help identify more germline-originated alleles as expected, and 93.89% of them could be captured by using an NGS-based STR system (NGS-STR). The identity-by-state (IBS) scoring system was applied to generate a new tumor source identification method based on NGS-STR, and the number of loci with 2 identical alleles (A2) proved to be an ideal criterion for the larger area under the receiver operating characteristic (ROC) curve (AUC). Both the sensitivity and specificity were above 98% in the cutoff of A2 to distinguish the paired carcinoma (PC) sample group from the unrelated individual (UI) group, the simulated full sibling (FS) group, and the simulated parent-offspring (PO) group.

18.
Sci Justice ; 62(1): 50-59, 2022 01.
Article in English | MEDLINE | ID: mdl-35033328

ABSTRACT

The analysis of trace DNA is a crucial component in forensic applications. Biological materials containing low-level DNA collected at crime scenes, such as fingerprints, can be valuable as evidence. Automatic detection of biological samples has been largely embraced in forensic applications to meet the increasing throughput requirements. However, the amount of DNA automatically retrieved from trace evidence often tends to be small and unstable, ultimately resulting in poor detection of DNA profiles. Thus, in this work, we introduced a robust DNA extraction and purification platform named Bionewtech® BN3200 (Bionewtech®, Shanghai, China) with the goal of constructing a rapid automatic detection system for trace DNA. The establishment of automatic detection system for trace DNA mainly encompassed two parts: assessing the sensitivity of automatic extraction platform and screening the optimal short tandem repeat (STR) typing kit. The sensitivity of Bionewtech® BN3200 platform based on Ultra-sensitive DNA Extraction kit was initially estimated, demonstrating that this extraction platform might contain large potential in the trace DNA extraction. For the amplification part, three sets of commercial multiplex STR typing kits were selected as candidates, and the amplified products were further genotyped on the Applied Biosystems 3500xl Genetic Analyzer. After comparation, SiFa™ 23 Plex Kit was determined as the most suitable amplification system for trace DNA. Eventually, the newly exploited trace DNA detection system was successfully implemented in the detection of fingerprints derived from glass surfaces with the five-seconds contact time. As a result, the DNA recovered from the fingerprints fluctuated approximately from 57.60 pg to 18.05 ng, in addition, over 70% of the total STR loci were detected in 75% of the fingerprint samples.


Subject(s)
DNA Fingerprinting , DNA , China , DNA/analysis , DNA Fingerprinting/methods , Forensic Genetics/methods , Genotype , Humans , Microsatellite Repeats
19.
Fa Yi Xue Za Zhi ; 38(6): 733-738, 2022 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-36914389

ABSTRACT

OBJECTIVES: To investigate the genetic polymorphism of InDel loci in SifalnDel 45plex system in the Han population in Jiangsu Province and the Mongolian population in Inner Mongolia, and to evaluate the effectiveness of the system in forensic medicine. METHODS: SifaInDel 45plex system was used for genotyping in blood samples of 398 unrelated individuals from the above two populations, and allele frequencies and population genetic parameters of the two populations were calculated respectively. Eight intercontinental populations in the gnomAD database were used as reference populations. The genetic distances between the two studied populations and eight reference populations were calculated based on the allele frequencies of 27 autosomal-InDels (A-InDels). The phylogenetic trees and multidimensional scaling (MDS) analysis diagrams were constructed accordingly. RESULTS: Among two studied populations, the 27 A-InDels and 16 X-InDels showed no linkage disequilibrium between each other and the allele frequency distributions were in Hardy-Weinberg equilibrium. The CDP of the 27 A-InDels in two studied populations were all higher than 0.999 999 999 9, and the CPEtrio were all less than 0.999 9. The CDP of the 16 X-InDels in Han in Jiangsu and Mongolian in Inner Mongolia female and male samples were 0.999 997 962, 0.999 998 389, and 0.999 818 940, 0.999 856 063, respectively. The CMECtrio were all less than 0.999 9. The results of population genetics showed that the Jiangsu Han nationality, Inner Mongolia Mongolian nationality and East Asian population clustered into one branch, showing closer genetic relationship. The other 7 intercontinental populations clustered into another group. And the above 3 populations displayed distant genetic relationships with the other 7 intercontinental populations. CONCLUSIONS: The InDels in the SifaInDel 45plex system have good genetic polymorphism in the two studied populations, which can be used for forensic individual identification or as an effective complement for paternity identification, and to distinguish different intercontinental populations.


Subject(s)
Genetics, Population , Polymorphism, Genetic , Humans , Phylogeny , Gene Frequency , Asian People/genetics , China , INDEL Mutation
20.
Fa Yi Xue Za Zhi ; 38(6): 763-773, 2022 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-36914393

ABSTRACT

In forensic physical evidence identification, the accurate identification of the individual origin and their body fluid composition of the biological samples obtained from the crime scene play a critical role in determining the nature of a crime. In recent years, RNA profiling has become one of the fastest developing methods for body fluids identification. Due to the characteristics of tissue or body fluid specific expression, various types of RNA markers have been proven to be promising candidate markers for body fluids identification in previous studies. This review summarizes the research progress of RNA markers in body fluids identification, including the RNA markers that have been effectively verified in current research and their advantages and disadvantages. Meanwhile, this review prospects the application of RNA markers in forensic medicine.


Subject(s)
Body Fluids , Forensic Medicine , Forensic Medicine/methods , Body Fluids/chemistry , RNA/genetics , RNA/analysis , Feces , Forensic Genetics , Semen/chemistry , Saliva/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...