Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
N Engl J Med ; 390(18): 1690-1698, 2024 May 09.
Article En | MEDLINE | ID: mdl-38718359

In patients with immune thrombotic thrombocytopenic purpura (iTTP), autoantibodies against the metalloprotease ADAMTS13 lead to catastrophic microvascular thrombosis. However, the potential benefits of recombinant human ADAMTS13 (rADAMTS13) in patients with iTTP remain unknown. Here, we report the clinical use of rADAMTS13, which resulted in the rapid suppression of disease activity and complete recovery in a critically ill patient whose condition had proved to be refractory to all available treatments. We also show that rADAMTS13 causes immune complex formation, which saturates the autoantibody and may promote its clearance. Our data support the role of rADAMTS13 as a novel adjunctive therapy in patients with iTTP.


ADAMTS13 Protein , Purpura, Thrombotic Thrombocytopenic , Female , Humans , ADAMTS13 Protein/immunology , ADAMTS13 Protein/therapeutic use , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/immunology , Autoantibodies/blood , Autoantibodies/immunology , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/drug therapy , Purpura, Thrombotic Thrombocytopenic/immunology , Purpura, Thrombotic Thrombocytopenic/therapy , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Adult , Black or African American , Plasma Exchange , Treatment Outcome
2.
Mol Ther ; 26(6): 1447-1456, 2018 06 06.
Article En | MEDLINE | ID: mdl-29678657

B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation.


B-Cell Maturation Antigen/metabolism , Immunotherapy, Adoptive/methods , Single-Chain Antibodies/immunology , Adaptive Immunity/physiology , CD4-Positive T-Lymphocytes/metabolism , Herpesvirus 4, Human/immunology , Humans , Receptors, Antigen, T-Cell/metabolism
...