Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630526

ABSTRACT

'Marker-free' strategies for creating transgenic microorganisms avoid the issue of potential transmission of antibiotic resistance genes to other microorganisms. An already-established strategy for engineering the chloroplast genome (=plastome) of the green microalga Chlamydomonas reinhardtii involves the restoration of photosynthetic function using a recipient strain carrying a plastome mutation in a key photosynthesis gene. Selection for transformant colonies is carried out on minimal media, such that only those cells in which the mutated gene has been replaced with a wild-type copy carried on the transgenic DNA are capable of phototrophic growth. However, this approach can suffer from issues of efficiency due to the slow growth of C. reinhardtii on minimal media and the slow die-back of the untransformed lawn of cells when using mutant strains with a limited photosensitivity phenotype. Furthermore, such phototrophic rescue has tended to rely on existing mutants that are not necessarily ideal for transformation and targeted transgene insertion: Mutants carrying point mutations can easily revert, and those with deletions that do not extend to the intended transgene insertion site can give rise to a sub-population of rescued lines that lack the transgene. In order to improve and accelerate the transformation pipeline for C. reinhardtii, we have created a novel recipient line, HNT6, carrying an engineered deletion in exon 3 of psaA, which encodes one of the core subunits of photosystem I (PSI). Such PSI mutants are highly light-sensitive allowing faster recovery of transformant colonies by selecting for light-tolerance on acetate-containing media, rather than phototrophic growth on minimal media. The deletion extends to a site upstream of psaA-3 that serves as a neutral locus for transgene insertion, thereby ensuring that all of the recovered colonies are transformants containing the transgene. We demonstrate the application of HNT6 using a luciferase reporter.

2.
Sci Rep ; 13(1): 10028, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340047

ABSTRACT

Polyethylene terephthalate hydrolases (PETases) are a newly discovered and industrially important class of enzymes that catalyze the enzymatic degradation of polyethylene terephatalate (PET), one of the most abundant plastics in the world. The greater enzymatic efficiencies of PETases compared to close relatives from the cutinase and lipase families have resulted in increasing research interest. Despite this, further characterization of PETases is essential, particularly regarding their possible activity against other kinds of plastic. In this study, we exploited for the first time the use of the microalgal chloroplast for more sustainable synthesis of a PETase enzyme. A photosynthetic-restoration strategy was used to generate a marker-free transformant line of the green microalga Chlamydomonas reinhardtii in which the PETase from Ideonella sakaiensis was constitutively expressed in the chloroplast. Subsequently, the activity of the PETase against both PET and post-consumer plastics was investigated via atomic force microscopy, revealing evidence of degradation of the plastics.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Humans , Microalgae/metabolism , Chlamydomonas reinhardtii/metabolism , Plastics , Hydrolases/metabolism , Polyethylene Terephthalates , Chloroplasts/metabolism
3.
Biotechnol J ; 17(10): e2200088, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35509114

ABSTRACT

The chloroplast represents an attractive compartment for light-driven biosynthesis of recombinant products, and advanced synthetic biology tools are available for engineering the chloroplast genome ( = plastome) of several algal and plant species. However, producing commercial lines will likely require several plastome manipulations. This presents issues with respect to selectable markers, since there are a limited number available, they can be used only once in a serial engineering strategy, and it is undesirable to retain marker genes for antibiotic resistance in the final transplastome. To address these problems, we have designed a rapid iterative selection system, known as CpPosNeg, for the green microalga Chlamydomonas reinhardtii that allows creation of marker-free transformants starting from wild-type strains. The system employs a dual marker encoding a fusion protein of E. coli aminoglycoside adenyltransferase (AadA: conferring spectinomycin resistance) and a variant of E. coli cytosine deaminase (CodA: conferring sensitivity to 5-fluorocytosine). Initial selection on spectinomycin allows stable transformants to be established and driven to homoplasmy. Subsequent selection on 5-fluorocytosine results in rapid loss of the dual marker through intramolecular recombination between the 3'UTR of the marker and the 3'UTR of the introduced transgene. We demonstrate the versatility of the CpPosNeg system by serial introduction of reporter genes into the plastome.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , 3' Untranslated Regions , Aminoglycosides , Biomarkers/metabolism , Chlamydomonas/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Escherichia coli/genetics , Flucytosine/metabolism , Spectinomycin/metabolism , Transformation, Genetic
4.
Front Plant Sci ; 12: 708370, 2021.
Article in English | MEDLINE | ID: mdl-34630459

ABSTRACT

Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called "synthetic metabolism", may be needed to really bring about significant step changes. In many cases, this will require re-programming the metabolism of the chloroplast, or other plastids in non-green tissues, through a combination of chloroplast and nuclear engineering. However, current technologies for sophisticated chloroplast engineering ("transplastomics") of plants are limited to just a handful of species. Moreover, the testing of metabolic rewiring in the chloroplast of plant models is often impractical given their obligate phototrophy, the extended time needed to create stable non-chimeric transplastomic lines, and the technical challenges associated with regeneration of whole plants. In contrast, the unicellular green alga, Chlamydomonas reinhardtii is a facultative heterotroph that allows for extensive modification of chloroplast function, including non-photosynthetic designs. Moreover, chloroplast engineering in C. reinhardtii is facile, with the ability to generate novel lines in a matter of weeks, and a well-defined molecular toolbox allows for rapid iterations of the "Design-Build-Test-Learn" (DBTL) cycle of modern synthetic biology approaches. The recent development of combinatorial DNA assembly pipelines for designing and building transgene clusters, simple methods for marker-free delivery of these clusters into the chloroplast genome, and the pre-existing wealth of knowledge regarding chloroplast gene expression and regulation in C. reinhardtii further adds to the versatility of transplastomics using this organism. Herein, we review the inherent advantages of the algal chloroplast as a simple and tractable testbed for metabolic engineering designs, which could then be implemented in higher plants.

5.
Bioengineered ; 9(1): 48-54, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28892417

ABSTRACT

Most commercial production of recombinant pharmaceutical proteins involves the use of mammalian cell lines, E. coli or yeast as the expression host. However, recent work has demonstrated the potential of eukaryotic microalgae as platforms for light-driven synthesis of such proteins. Expression in the algal chloroplast is particularly attractive since this organelle contains a minimal genome suitable for rapid engineering using synthetic biology approaches; with transgenes precisely targeted to specific genomic loci and amenable to high-level, regulated and stable expression. Furthermore, proteins can be tightly contained and bio-encapsulated in the chloroplast allowing accumulation of proteins otherwise toxic to the host, and opening up possibilities for low-cost, oral delivery of biologics. In this commentary we illustrate the technology with recent examples of hormones, protein antibiotics and immunotoxins successfully produced in the algal chloroplast, and highlight possible future applications.


Subject(s)
Biological Products/metabolism , Chlorophyta/genetics , Chloroplasts/genetics , Dietary Supplements/supply & distribution , Genome, Chloroplast , Microalgae/genetics , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chlorophyta/metabolism , Chloroplasts/metabolism , Gene Expression , Genetic Engineering/methods , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Human Growth Hormone/biosynthesis , Human Growth Hormone/genetics , Immunotoxins/genetics , Immunotoxins/metabolism , Microalgae/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Synthetic Biology/methods , Transformation, Genetic , Transgenes
6.
Plant Biotechnol J ; 15(9): 1130-1140, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28160380

ABSTRACT

There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage-infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl-1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Chlamydomonas reinhardtii/metabolism , Endopeptidases/pharmacology , Streptococcus pneumoniae/drug effects , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Bacteriophages/metabolism , Cell Wall/metabolism , Chlamydomonas reinhardtii/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Humans , Plants, Genetically Modified , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...