Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Cell Physiol ; 239(5): e31256, 2024 May.
Article En | MEDLINE | ID: mdl-38591855

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.


Antineoplastic Agents , Apoptosis , Bone Neoplasms , Calcium Phosphates , Doxorubicin , Methotrexate , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Calcium Phosphates/administration & dosage , Calcium Phosphates/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Strontium/pharmacology , Strontium/chemistry , Tissue Scaffolds/chemistry , Drug Delivery Systems , Methotrexate/administration & dosage , Methotrexate/pharmacology
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474056

This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.


Nanomedicine , Nanoparticles , Nanomedicine/methods , Durapatite/chemistry , Regenerative Medicine , Nanoparticles/chemistry , Magnetic Phenomena
3.
Front Bioeng Biotechnol ; 10: 969641, 2022.
Article En | MEDLINE | ID: mdl-36568303

Injectable calcium phosphate cements (CPCs) represent promising candidates for the regeneration of complex-shape bone defects, thanks to self-hardening ability, bioactive composition and nanostructure offering high specific surface area for cell attachment and conduction. Such features make CPCs also interesting for functionalization with various biomolecules, towards the generation of multifunctional devices with enhanced therapeutic ability. In particular, strontium-doped CPCs have been studied in the last years due to the intrinsic antiosteoporotic character of strontium. In this work, a SrCPC previously reported as osteointegrative and capable to modulate the fate of bone cells was enriched with hydroxyapatite nanoparticles (HA-NPs) functionalized with tetracycline (TC) to provide antibacterial activity. We found that HA-NPs functionalized with TC (NP-TC) can act as modulator of the drug release profile when embedded in SrCPCs, thus providing a sustained and tunable TC release. In vitro microbiological tests on Escherichia coli and Staphylococcus aureus strains proved effective bacteriostatic and bactericidal properties, especially for the NP-TC loaded SrCPC formulations. Overall, our results indicate that the addition of NP-TC on CPC acted as effective modulator towards a tunable drug release control in the treatment of bone infections or cancers.

4.
Biomimetics (Basel) ; 7(3)2022 Aug 13.
Article En | MEDLINE | ID: mdl-35997432

Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.

5.
Chem Commun (Camb) ; 54(13): 1635-1638, 2018 Feb 08.
Article En | MEDLINE | ID: mdl-29376163

Fe-EDDHSA/CaCO3 hybrid crystals are synthesized and tested in vitro to determine their effect in treating iron chlorosis in kiwifruit plants, used as a proof of concept. Under the alkaline conditions provided by the calcareous substrate, plants release protons that dissolve the hybrids and trigger Fe uptake. These CaCO3 hybrids represent a new system for active molecule delivery in agriculture.


Calcium Carbonate/therapeutic use , Iron Chelating Agents/therapeutic use , Iron/therapeutic use , Phenylacetates/therapeutic use , Plant Diseases/prevention & control , Actinidia/metabolism , Calcium Carbonate/chemical synthesis , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Crystallization , Hydrogen-Ion Concentration , Iron/chemistry , Iron/metabolism , Iron Chelating Agents/chemistry , Iron Chelating Agents/metabolism , Iron Deficiencies , Phenylacetates/chemistry , Phenylacetates/metabolism
...