Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(2): e17217, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014715

ABSTRACT

Social insect reproductives and non-reproductives represent ideal models with which to understand the expression and regulation of alternative phenotypes. Most research in this area has focused on the developmental regulation of reproductive phenotypes in obligately social taxa such as honey bees, while relatively few studies have addressed the molecular correlates of reproductive differentiation in species in which the division of reproductive labour is established only in plastic dominance hierarchies. To address this knowledge gap, we generate the first genome for any stenogastrine wasp and analyse brain transcriptomic data for non-reproductives and reproductives of the facultatively social species Liostenogaster flavolineata, a representative of one of the simplest forms of social living. By experimentally manipulating the reproductive 'queues' exhibited by social colonies of this species, we show that reproductive division of labour in this species is associated with transcriptomic signatures that are more subtle and variable than those observed in social taxa in which colony living has become obligate; that variation in gene expression among non-reproductives reflects their investment into foraging effort more than their social rank; and that genes associated with reproductive division of labour overlap to some extent with those underlying division of labour in the separate polistine origin of wasp sociality but only explain a small portion of overall variation in this trait. These results indicate that broad patterns of within-colony transcriptomic differentiation in this species are similar to those in Polistinae but offer little support for the existence of a strongly conserved 'toolkit' for sociality.


Subject(s)
Wasps , Bees/genetics , Animals , Wasps/genetics , Social Behavior , Social Dominance , Gene Expression Profiling , Transcriptome/genetics , Reproduction/genetics
2.
Sci Rep ; 13(1): 6232, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085574

ABSTRACT

Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.


Subject(s)
Wasps , Animals , Wasps/genetics , Introduced Species , Reproduction
3.
Nat Commun ; 14(1): 1046, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828829

ABSTRACT

A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality.


Subject(s)
Wasps , Animals , Wasps/physiology , Evolution, Molecular , Transcriptome , Social Behavior
4.
Curr Opin Insect Sci ; 28: 26-32, 2018 08.
Article in English | MEDLINE | ID: mdl-30551764

ABSTRACT

The major evolutionary transition to superorganismality has taken place several times in the insects. Although there has been much consideration of the ultimate evolutionary explanations for superorganismality, we know relatively little about what proximate mechanisms constrain or promote this major transition. Here, we propose that Vespid wasps represent an understudied, but potentially very useful, model system for studying the mechanisms underpinning superorganismality. We highlight how there is an abundance of behavioural data for many wasp species, confirming their utility in studies of social evolution; however, there is a sparsity of genomic data from which we can test proximate and ultimate hypotheses on this major evolutionary transition.


Subject(s)
Biological Evolution , Wasps/physiology , Animals , Behavior, Animal , Social Behavior , Wasps/genetics
5.
Curr Opin Insect Sci ; 25: 42-50, 2018 02.
Article in English | MEDLINE | ID: mdl-29602361

ABSTRACT

The term 'caste' is used to describe the division of reproductive labour that defines eusocial insect societies. The definition of 'caste' has been debated over the last 50 years, specifically with respect to the simplest insect societies; this raises the question of whether a simple categorisation of social behaviour by reproductive state alone is helpful. Gene-level analyses of behaviours of individuals in hymenopteran social insect societies now provide a new empirical base-line for defining caste and understanding the evolution and maintenance of a reproductive division of labour. We review this literature to identify a set of potential molecular signatures that, combined with behavioural, morphological and physiological data, help define caste more precisely; these signatures vary with the type of society, and are likely to be influenced by ecology, life-history, and stage in the colony cycle. We conclude that genomic approaches provide us with additional ways to help quantify and categorise caste, and behaviour in general.


Subject(s)
Hymenoptera/physiology , Social Behavior , Animals , Behavior, Animal/physiology , Female , Gene Expression , Hymenoptera/genetics , Hymenoptera/growth & development , Phenotype , Reproduction/physiology
6.
Trends Ecol Evol ; 32(11): 861-872, 2017 11.
Article in English | MEDLINE | ID: mdl-28899581

ABSTRACT

Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality.


Subject(s)
Behavior, Animal , Hymenoptera/physiology , Isoptera/physiology , Social Behavior , Animals , Biological Evolution
7.
Toxicol Sci ; 158(2): 252-262, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28525648

ABSTRACT

In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.


Subject(s)
Adverse Outcome Pathways , Lipid Metabolism , Metabolomics , Proteomics , Transcriptome , Animals , Humans , Risk Assessment
8.
PLoS One ; 10(3): e0118839, 2015.
Article in English | MEDLINE | ID: mdl-25768438

ABSTRACT

Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.


Subject(s)
Environment , Oligonucleotide Array Sequence Analysis/methods , Ostreidae/genetics , Ostreidae/physiology , Stress, Physiological/genetics , Subtractive Hybridization Techniques/methods , Transcription, Genetic , Animals , Ostreidae/metabolism
9.
Environ Toxicol ; 30(9): 989-98, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24615909

ABSTRACT

In the current study, we tested the effects of common environmental contaminants (the metals zinc and lead) on gene expression in Sydney rock oysters (Saccrostrea glomerata). Oysters were exposed to a range of metal concentrations under controlled laboratory conditions. The expression of 14 putative stress response genes was then measured using quantitative, real-time (q) PCR. The expression of all 14 genes was significantly affected (p < 0.05 vs. nonexposed controls) by at least one of the metals, and by at least one dose of metal. For 5 of the 14 target genes (actin, calmodulin, superoxide dismutase, topoisomerase I, and tubulin) the alteration of expression relative to controls was highest at intermediate (rather than high) doses of metals. Such responses may reflect adaptive (acclimation) reactions in gene expression at low to intermediate doses of contaminants, followed by a decline in expression resulting from exposure at higher doses. The data are discussed in terms of the intracellular pathways affected by metal contamination, and the relevance of such gene expression data to environmental biomonitoring.


Subject(s)
Metals/toxicity , Ostreidae/drug effects , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Chlorides/toxicity , Environmental Monitoring , Lead/toxicity , Metals/chemistry , Ostreidae/genetics , Ostreidae/metabolism , Real-Time Polymerase Chain Reaction , Water Pollutants, Chemical/chemistry , Zinc Compounds/toxicity
10.
Environ Pollut ; 178: 65-71, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23545341

ABSTRACT

Environmental contamination by metals is a serious threat to the biological sustainability of coastal ecosystems. Our current understanding of the potential biological effects of metals in these ecosystems is limited. This study tested the transcriptional expression of immune- and stress-response genes in Sydney Rock oysters (Saccostrea glomerata). Oysters were exposed to four metals (cadmium, copper, lead and zinc) commonly associated with anthropogenic pollution in coastal waterways. Seven target genes (superoxide dismutase, ferritin, ficolin, defensin, HSP70, HSP90 and metallothionein) were selected. Quantitative (real-time) PCR analyses of the transcript expression of these genes showed that each of the different metals elicited unique transcriptional profiles. Significant changes in transcription were found for 18 of the 28 combinations tested (4 metals × 7 genes). Of these, 16 reflected down-regulation of gene transcription. HSP90 was the only gene significantly up-regulated by metal contamination (cadmium and zinc only), while defensin expression was significantly down-regulated by exposure to all four metals. This inhibition could have a significant negative effect on the oyster immune system, promoting susceptibility to opportunistic infections and disease.


Subject(s)
Environmental Monitoring/methods , Gene Expression Regulation/drug effects , Metals/toxicity , Ostreidae , Water Pollutants, Chemical/toxicity , Animals , Down-Regulation , Gene Expression/drug effects , HSP90 Heat-Shock Proteins/genetics , Immune System/drug effects , Immune System/physiology , Stress, Physiological/physiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Up-Regulation
11.
Environ Pollut ; 170: 102-12, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22771357

ABSTRACT

This study used proteomics to assess the impacts of metal contamination in the field on Sydney Rock oysters. Oysters were transplanted into Lake Macquarie, NSW, for two weeks in both 2009 and 2010. Two-dimensional electrophoresis identified changes in protein expression profiles of oyster haemolymph between control and metal contaminated sites. There were unique protein expression profiles for each field trial. Principal components analysis attributed these differences in oyster proteomes to the different combinations and concentrations of metals and other environmental variables present during the three field trials. Identification of differentially expressed proteins showed that proteins associated with cytoskeletal activity and stress responses were the most commonly affected biological functions in the Sydney Rock oyster. Overall, the data show that proteomics combined with multivariate analysis has the potential to link the effects of contaminants with biological consequences.


Subject(s)
Environmental Monitoring/methods , Metals/toxicity , Proteome/metabolism , Water Pollutants, Chemical/toxicity , Animals , Hemolymph/metabolism , Lakes , Metals/analysis , Metals/metabolism , New South Wales , Ostreidae/drug effects , Ostreidae/metabolism , Proteomics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
12.
Aquat Toxicol ; 109: 202-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22030410

ABSTRACT

In the current study we examined the effects of metal contamination on the protein complement of Sydney Rock oysters. Saccostrea glomerata were exposed for 4 days to three environmentally relevant concentrations (100 µg/l, 50 µg/l and 5 µg/l) of cadmium, copper, lead and zinc. Protein abundances in oyster haemolymph from metal-exposed oysters were compared to those from non-exposed controls using two-dimensional electrophoresis to display differentially expressed proteins. Differentially expressed proteins were subsequently identified using tandem mass spectrometry (LC-MS/MS), to assign their putative biological functions. Unique sets of differentially expressed proteins were affected by each metal, in addition to proteins that were affected by more than one metal. The proteins identified included some that are commonly associated with environmental monitoring, such as HSP 70, and other novel proteins not previously considered as candidates for molecular biomonitoring. The most common biological functions of proteins were associated with stress response, cytoskeletal activity and protein synthesis.


Subject(s)
Biomarkers/analysis , Environmental Monitoring/methods , Metals, Heavy/toxicity , Ostreidae/drug effects , Proteomics , Water Pollutants, Chemical/toxicity , Animals , Gene Expression Regulation/drug effects , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
13.
Aquat Toxicol ; 103(3-4): 241-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21530475

ABSTRACT

The current study uses proteomics to assess the effects of metal contamination on Sydney Rock oyster haemolymph. Saccostrea glomerata were exposed in aquaria for four days to three environmentally relevant metals (copper, lead or zinc). Oyster haemolymph proteins from metal-exposed oysters were then compared to haemolymph from non-exposed controls using 2-dimensional electrophoresis to identify proteins that differed significantly in intensity. These proteins were then subjected to tandem mass spectrometry so that putative protein identities could be assigned. The data suggest that there are unique protein expression profiles for each metal. Exposure to 100 µg/l of copper, lead or zinc yielded a total of 25 differentially expressed proteins. However, only one of these protein spots exhibited altered intensities in response to all three metals. Eighteen of the 25 spots were significantly affected by just one of the three metals. Differentially expressed proteins were assigned to five different categories of biological function. Proteins affecting shell properties were the most common functional group accounting for 34% of the identified proteins. Cytoskeletal activities and metabolism/stress responses each accounted for a further 25% of the proteins.


Subject(s)
Hemolymph/metabolism , Metals/metabolism , Ostreidae/metabolism , Proteome/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Metals/toxicity , New South Wales , Ostreidae/drug effects , Proteomics , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL