Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(6): 1100-1110, 2023 06.
Article in English | MEDLINE | ID: mdl-37264156

ABSTRACT

Memory consolidation during sleep is thought to depend on the coordinated interplay between cortical slow waves, thalamocortical sleep spindles and hippocampal ripples, but direct evidence is lacking. Here, we implemented real-time closed-loop deep brain stimulation in human prefrontal cortex during sleep and tested its effects on sleep electrophysiology and on overnight consolidation of declarative memory. Synchronizing the stimulation to the active phases of endogenous slow waves in the medial temporal lobe (MTL) enhanced sleep spindles, boosted locking of brain-wide neural spiking activity to MTL slow waves, and improved coupling between MTL ripples and thalamocortical oscillations. Furthermore, synchronized stimulation enhanced the accuracy of recognition memory. By contrast, identical stimulation without this precise time-locking was not associated with, and sometimes even degraded, these electrophysiological and behavioral effects. Notably, individual changes in memory accuracy were highly correlated with electrophysiological effects. Our results indicate that hippocampo-thalamocortical synchronization during sleep causally supports human memory consolidation.


Subject(s)
Memory Consolidation , Humans , Memory Consolidation/physiology , Sleep/physiology , Hippocampus/physiology , Temporal Lobe , Prefrontal Cortex/physiology , Electroencephalography/methods
2.
Brain Stimul ; 14(1): 131-140, 2021.
Article in English | MEDLINE | ID: mdl-33279717

ABSTRACT

BACKGROUND: While deep brain stimulation has been successful in treating movement disorders, such as in Parkinson's disease, its potential application in alleviating memory disorders is inconclusive. OBJECTIVE/HYPOTHESIS: We investigated the role of the location of the stimulating electrode on memory improvement and hypothesized that entorhinal white versus gray matter stimulation would have differential effects on memory. METHODS: Intracranial electrical stimulation was applied to the entorhinal area of twenty-two participants with already implanted electrodes as they completed visual memory tasks. RESULTS: We found that stimulation of right entorhinal white matter during learning had a beneficial effect on subsequent memory, while stimulation of adjacent gray matter or left-sided stimulation was ineffective. This finding was consistent across three different visually guided memory tasks. CONCLUSIONS: Our results highlight the importance of precise stimulation site on modulation of human hippocampal-dependent memory and suggest that stimulation of afferent input into the right hippocampus may be an especially promising target for enhancement of visual memory.


Subject(s)
White Matter , Entorhinal Cortex , Hippocampus , Humans , Memory , Temporal Lobe , White Matter/diagnostic imaging
3.
Elife ; 62017 10 24.
Article in English | MEDLINE | ID: mdl-29063831

ABSTRACT

The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 µm-diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.


Subject(s)
Entorhinal Cortex/physiology , Long-Term Potentiation , Memory , Theta Rhythm , Electric Stimulation , Humans , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...