Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 17(1): 97, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580804

ABSTRACT

Energetic heterocycles, including pyridines, triazoles, and tetrazoles, exhibit greater density, heats of formation, and oxygen balance compared to their carbocyclic counterparts, making them a promising approach for synthesizing novel bis-tetrazole acetamides. Synthesized compounds A-F, some of which feature a chlorine atom attached to the phenyl ring, serve as valuable synthons for aryl coupling reactions. Analysis via 1H-NMR and 13C-NMR spectroscopy, as well as density functional considerations through B3LYP functional correlation with 6-311 + + G(d) and 6-31G(d) basis set, revealed the observed LUMO/HOMO energies and charge transfer within the molecule. Additionally, the dipole moment, chemical hardness, softness, ionization potential, local reactivity potential via Fukui indices and thermodynamic properties (entropy, enthalpy, and Gibbs free energy) of the molecule were calculated through density functional theory studies. In addition, Molecular Docking studies were conducted to investigate the anti-cancer potential of synthesized heterocyclic compounds against caspase 3, NF-KAPPA-B and P53 protein. Molecular docking analysis demonstrated a potent interaction between 2,2'-(5,5'-(1,4-phenylene)bis(1H-tetrazole-5,1-diyl))bis-N-(2,4-dinitrophenyl) acetamides (6d) and TP53 and NF-KAPPA-B with binding energies of - 11.8 kJ/mol and - 10.9 kJ/mol for TP53 and NF-KAPPA-B, respectively. Similarly, 2,2'-(5,5'-(1,4-phenylene)bis(1H-tetrazole-5,1-diyl))bis-N-(2-chlorophenyl) acetamides (6f) exhibited a strong interaction with caspase-3 with binding energy of -10.0 kJ/mol, indicating their potential as therapeutic agents against these proteins. Furthermore, the findings of current study was further strengthen by 100 ns molecular dynamics (MD) simulations. Finally, theoretical studies of oxygen balance and nitrogen percentage suggest that these molecules can be utilized as energetic materials.

2.
Med Chem Res ; 32(6): 1077-1086, 2023.
Article in English | MEDLINE | ID: mdl-37305207

ABSTRACT

Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.

3.
Bioorg Chem ; 131: 106302, 2023 02.
Article in English | MEDLINE | ID: mdl-36528921

ABSTRACT

The current studies mainly demonstrate the coumarin based azomethine-clubbed thiazoles synthesis and their in-vitro evaluation for the first time against α-glucosidase. Due to the catalytic role of α-glucosidase, it has become a precise target for the treatment of type diabetes mellitus (T2DM). The high rate of prevalence of diabetes and its associated health related problems led us to scrutinize the anti-diabetic capability of the synthesized thiazole derivatives (6a-6k). The anticipated structures of prepared compounds were confirmed through FT-IR and NMR spectroscopic methods. All the compounds showed several times potent activity than the standard drug, acarbose (IC50 = 873.34 ± 1.67 µM) against α-glucosidase with IC50 values in range of 0.87 ± 0.02-322.61 ± 1.14 µM. The compound 6k displayed the highest anti-diabetic activity (IC50 = 1.88 ± 0.03 µM). Kinetic study revealed that these are competitive inhibitors for α-glucosidase. The mode of binding of the synthesized molecules were further evaluated by molecular docking, which reflects the importance of azomethine group in protein-ligand interaction. The docking scores are complementary with the IC50 values of compounds while the interaction pattern of the compounds clearly demonstrates their structure-activity relationship. Current study reported medicinal importance of thiazole derivative as future drug candidates for the management of Type 2 Diabetes Mellitus (T2DM).


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Humans , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Diabetes Mellitus, Type 2/drug therapy , alpha-Glucosidases/metabolism , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Kinetics , Thiazoles/chemistry
4.
RSC Adv ; 12(27): 17194-17207, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35755589

ABSTRACT

N-((4-Acetylphenyl)carbamothioyl)-2,4-dichlorobenzamide (4) was synthesized by the treatment of 2,4-dichlorobenzoyl chloride with potassium thiocyanate in a 1 : 1 molar ratio in dry acetone to afford the 2,4-dichlorobenzoyl isothiocyanate in situ which on reaction with acetyl aniline furnished (4) in good yield and high purity. The compound was confirmed by FTIR, 1H-NMR, and 13C-NMR and single crystal X-ray diffraction studies. The planar rings were situated at a dihedral angle of 33.32(6)°. The molecules, forming S(6) ring motifs with the intramolecular N-H⋯O hydrogen bonds, were linked through intermolecular C-H⋯O and N-H⋯S hydrogen bonds, enclosing R2 2(8) ring motifs, into infinite double chains along [101]. C-H⋯π and π⋯π interactions with an inter-centroid distance of 3.694 (1) Å helped to consolidate a three-dimensional architecture. Hirshfeld surface (HS) analysis further indicated that the most important contributions for the crystal packing were from H⋯C/C⋯H (20.9%), H⋯H (20.5%), H⋯Cl/Cl⋯H (19.4%), H⋯O/O⋯H (13.8%) and H⋯S/S⋯H (8.9%) interactions. Thus C-H⋯π (ring), π⋯π, van der Waals interactions and hydrogen bonding played the major roles in the crystal packing. The electronic structure and computed DFT (density functional theory) parameters identified the reactivity profile of compound (4). In silico binding of (4) with RNA indicated the formation of a stable protein-ligand complex via hydrogen bonding, while DNA docking studies inferred (4) as a potent groove binder. The experimentally observed hypochromic change (57.2%) in the UV-visible spectrum of (4) in the presence of varying DNA concentrations together with the evaluated binding parameters (K b; 7.9 × 104 M-1, ΔG; -28.42 kJ mol-1) indicated spontaneous interaction of (4) with DNA via groove binding and hence supported the findings obtained through docking analysis. This compound also showed excellent urease inhibition activity in both in silico and vitro studies with an IC50 value of 0.0389 ± 0.0017 µM. However, the radical scavenging efficiency of (4) was found to be modest in comparison to vitamin C.

5.
Mol Divers ; 26(6): 3241-3254, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35083622

ABSTRACT

Thiazole derivatives are known inhibitors of alkaline phosphatase, but various side effects have reduced their curative efficacy. Conversely, compounds bearing azomethine linkage display a broad spectrum of biological applications. Therefore, combining the two scaffolds in a single structural unit should result in joint beneficial effects of both. A new series of azomethine-clubbed thiazoles (3a-i) was synthesized and appraised for their inhibitory potential against human tissue non-specific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). Compounds 3c and 3f were found to be most potent compounds toward h-TNAP with IC50 values of 0.15 ± 0.01 and 0.50 ± 0.01 µM, respectively, whereas 3a and 3f exhibited maximum potency for h-IAP with IC50 value of 2.59 ± 0.04 and 2.56 ± 0.02 µM, respectively. Molecular docking studies were also performed to find the type of binding interaction between potential inhibitor and active sites of enzymes. The enzymes inhibition kinetics studies were carried out to define the mechanism of enzyme inhibition. The current study leads to discovery of some potent inhibitors of alkaline phosphatase that is promising toward identification of compounds with druggable properties.


Subject(s)
Alkaline Phosphatase , Enzyme Inhibitors , Thiazoles , Humans , Alkaline Phosphatase/antagonists & inhibitors , Alkaline Phosphatase/chemistry , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Thiazoles/pharmacology
6.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885728

ABSTRACT

This article describes the design and synthesis of a series of novel amantadine-thiourea conjugates (3a-j) as Jack bean urease inhibitors. The synthesized hybrids were assayed for their in vitro urease inhibition. Accordingly, N-(adamantan-1-ylcarbamothioyl)octanamide (3j) possessing a 7-carbon alkyl chain showed excellent activity with IC50 value 0.0085 ± 0.0011 µM indicating that the long alkyl chain plays a vital role in enzyme inhibition. Whilst N-(adamantan-1-ylcarbamothioyl)-2-chlorobenzamide (3g) possessing a 2-chlorophenyl substitution was the next most efficient compound belonging to the aryl series with IC50 value of 0.0087 ± 0.001 µM. The kinetic mechanism analyzed by Lineweaver-Burk plots revealed the non-competitive mode of inhibition for compound 3j. Moreover, in silico molecular docking against target protein (PDBID 4H9M) indicated that most of the synthesized compounds exhibit good binding affinity with protein. The compound 3j forms two hydrogen bonds with amino acid residue VAL391 having a binding distance of 1.858 Å and 2.240 Å. The interaction of 3j with amino acid residue located outside the catalytic site showed its non-competitive mode of inhibition. Based upon these results, it is anticipated that compound 3j may serve as a lead structure for the design of more potent urease inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Helicobacter Infections/drug therapy , Structure-Activity Relationship , Urease/chemistry , Amantadine/analogs & derivatives , Amantadine/chemistry , Amantadine/pharmacology , Catalytic Domain/drug effects , Enzyme Inhibitors/pharmacology , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Helicobacter pylori/pathogenicity , Humans , Hydrogen Bonding/drug effects , Kinetics , Molecular Docking Simulation , Molecular Structure , Thiourea/chemistry , Thiourea/pharmacology , Urease/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...