Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13865, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879684

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, DNA , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice , COVID-19/prevention & control , COVID-19/immunology , HEK293 Cells , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology
3.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172257

ABSTRACT

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Subject(s)
Ceramides , GTP-Binding Proteins , Animals , Humans , Longevity/genetics , Endothelial Cells/metabolism , Mammals/metabolism
4.
Cytokine ; 171: 156357, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690425

ABSTRACT

Cytokine storm is an important cause of death in COVID-19 patients. A recent clinical study showed that administration of recombinant interferon lambda 1 (IFN-λ1 or IL-29) may prevent severe COVID-19. On the other hand, IL-6 has been associated as a prognostic marker of worsening for COVID-19 patients. The objective of this study is to screen IFN-λ1, IL-6 and antibody levels in consecutive serum sample sets of COVID-19 patients. A total of 365 serum samples collected from 208 hospitalized COVID-19 patients were analyzed for IFN-λ1 and IL-6 levels as well as SARS-CoV-2 neutralizing antibodies and anti-S1 IgG antibodies. Analyses of serum samples for cytokine levels showed that IFN-λ1 (>8 pg/mL) and IL-6 (>2 pg/mL) were detected in approximately 64% and 21% patients, respectively. A decrement in IFN-λ1 levels and IL-6 levels above 35 pg/mL can be sign of clinical severity and upcoming dead. An increment in IL-6 levels wasn't detected in every COVID-19 patient but a decrement in IL-6 levels was related to clinical improvement. Importantly, the detection of IFN-λ1 level together with an increase in anti-S1 IgG antibody response were observed in clinically improved patients. Screening severe COVID-19 patients for IFN-λ1, IL-6, and anti-S1 IgG antibody levels during their hospital stay especially in intensive care units may be beneficial to monitor the clinical status and management of treatment strategies. Importantly, detection of IFN-λ1 together with protective IgG antibody response can be an indication of clinical improvement in severe COVID-19 patients and these patients may be discharged from the hospital soon.

5.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569331

ABSTRACT

C-Vx is a bioprotective product designed to boost the immune system. This study aimed to determine the antiviral activity of the C-Vx substance against SARS-CoV-2 infection. The effect of C-Vx in K18-hACE2 transgenic mice against the SARS-CoV-2 virus was investigated. For this purpose, ten mice were separated into experimental and control groups. Animals were infected with SARS-CoV-2 prior to the administration of the product to determine whether the product has a therapeutic effect similar to that demonstrated in previous human studies, at a histopathological and molecular level. C-Vx-treated mice survived the challenge, whereas the control mice became ill and/or died. The cytokine-chemokine panel with blood samples taken during the critical days of the disease revealed detailed immune responses. Our findings showed that C-Vx presented 90% protection against the SARS-CoV-2 virus-infected mice. The challenge results and cytokine responses of K18-hACE2 transgenic mice matched previous scientific studies, demonstrating the C-Vx's antiviral efficiency.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , Mice, Transgenic , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytokines , Disease Models, Animal
6.
Turk J Biol ; 47(1): 1-13, 2023.
Article in English | MEDLINE | ID: mdl-37529114

ABSTRACT

X-ray crystallography is a robust and powerful structural biology technique that provides high-resolution atomic structures of biomacromolecules. Scientists use this technique to unravel mechanistic and structural details of biological macromolecules (e.g., proteins, nucleic acids, protein complexes, protein-nucleic acid complexes, or large biological compartments). Since its inception, single-crystal cryocrystallography has never been performed in Türkiye due to the lack of a single-crystal X-ray diffractometer. The X-ray diffraction facility recently established at the University of Health Sciences, Istanbul, Türkiye will enable Turkish and international researchers to easily perform high-resolution structural analysis of biomacromolecules from single crystals. Here, we describe the technical and practical outlook of a state-of-the-art home-source X-ray, using lysozyme as a model protein. The methods and practice described in this article can be applied to any biological sample for structural studies. Therefore, this article will be a valuable practical guide from sample preparation to data analysis.

7.
Mol Nutr Food Res ; 67(14): e2200804, 2023 07.
Article in English | MEDLINE | ID: mdl-37170075

ABSTRACT

SCOPE: The purpose of this study was to look into the antiviral activity of a plant extract derived from the roots of the Saussurea lappa as a food supplement against SARS-CoV-2 infection. METHODS AND RESULTS: Vero E6 cells are employed in the study to test the neutralizing effect of Saussurea lappa extract against the SARS-CoV-2 virus. For anti-viral activity detection, a sensitive real-time cell analyzer (xCELLigence RTCA) with a high repetition rate is used. A challenge experiment in mice is planned as a result of the in vitro analysis. A challenge test against SARS-CoV-2 is performed with 10 adult female K18-hACE2 transgenic mice in each group for this purpose. The mice in the S. lappa Group are gavaged 2 days before the virus is administered intranasally (i.n.). The control group received PBS instead of the extract. SARS-CoV-2 virus is administered i.n. under anesthesia for the first 3 days of the experiment, and S. lappa extract was administered by gavage in the afternoon. On the 10th day, mice in the S. lappa group survived the study, whereas animals in the control group grew ill and/or died. In this study, the extract protects the mice against the SARS-CoV-2 virus in 90% of the cases. CONCLUSIONS: This study demonstrates that the Saussurea plant has antiviral effects against SARS-CoV-2 in vitro and in animal models.


Subject(s)
COVID-19 , Saussurea , Mice , Animals , SARS-CoV-2 , Antiviral Agents/pharmacology , Plant Extracts/pharmacology
8.
Sci Rep ; 13(1): 5224, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997624

ABSTRACT

Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Mice, Transgenic , Saccharomyces cerevisiae , Antibodies, Viral , Antibodies, Neutralizing
9.
Med Oncol ; 40(1): 59, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36564533

ABSTRACT

Royal jelly is a gelatinous nutrient secretion produced by the mandibular glands of young worker honey bees and has a critical role in honey bee life. In the honey bee colonies, queen and worker honey bees have very different morphologies and behaviors due to their diet in the larval period, despite having the same genome. In comparison, queen bees formed from larvae that feed royal jelly exclusively, and worker bees formed from larvae that feed on much less royal jelly. DNA methylation has been shown to play a critical role in the development of queen and worker honeybees. Alterations in DNA methylation, one of the epigenetic mechanisms defined as hereditable nucleotide modifications that occur in gene expression without changes in the DNA sequence, are closely related to many diseases, especially cancer. Hypermethylation of CpG islands located in the promoter regions of genes causes gene silencing and tumor suppressor genes epigenetically have silenced in cancer. The inactivation of tumor suppressor genes disrupts nearly all cellular pathways in cancer. In contrast to genetic alterations, gene silencing by epigenetic modifications may potentially be reversed and used in cancer treatment. Royal jelly, which causes epigenetic changes in bee colonies, has the potential to cause a change in cancer cells. In our study, royal jelly's effects on DNA methyltransferase enzyme and gene methylation of RASSF1A tumor suppressor were investigated in human cancer cell lines (HeLa, HT29, and A549), and modifications in the gene expression profile of royal jelly were determined by next generation sequencing.


Subject(s)
Fatty Acids , Neoplasms , Humans , Animals , Larva/metabolism , Fatty Acids/metabolism , Genomics , Genes, Tumor Suppressor , Demethylation , Neoplasms/genetics
10.
Drug Deliv ; 29(1): 2846-2854, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36062490

ABSTRACT

Favipiravir, an RNA-dependent RNA polymerase (RdRp) inhibitor, is used to treat patients infected with influenza virus and most recently with SARS-CoV-2. However, poor accumulation of favipiravir in lung tissue following oral administration has required an alternative method of administration that directly targets the lungs. In this study, an inhalation solution of favipiravir at a concentration of 2 mg mL-1 was developed and characterized for the first time. The chemical stability of inhaled favipiravir solution in two different media, phosphate buffer saline (PBS) and normal saline (NS), was investigated under different conditions: 5 ± 3 °C, 25 ± 2 °C/60% RH ± 5% RH, and 40 ± 2 °C/75% RH ± 5% RH; in addition to constant light exposure. As a result, favipiravir solution in PBS revealed superior stability over 12 months at 5 ± 3 °C. Antiviral activity of favipiravir was assessed at the concentrations between 0.25 and 3 mg mL-1 with real time cell analyzer on Vero-E6 that were infected with SARS-CoV-2/B.1.36. The optimum concentration was found to be 2 mg mL-1, where minimum toxicity and sufficient antiviral activity was observed. Furthermore, cell viability assay against Calu-3 lung epithelial cells confirmed the biocompatibility of favipiravir at concentrations up to 50 µM (7.855 mg mL-1). The in vitro aerodynamic profiles of the developed inhaled favipiravir formulation, when delivered with soft-mist inhaler indicated good lung targeting properties. These results suggest that favipiravir solution prepared with PBS could be considered as a suitable and promising inhalation formulation for pulmonary delivery in the treatment of patients with COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Amides , Antiviral Agents/pharmacology , Humans , Lung , Pyrazines , Respiratory Aerosols and Droplets , SARS-CoV-2
11.
North Clin Istanb ; 9(2): 122-130, 2022.
Article in English | MEDLINE | ID: mdl-35582503

ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19), leading to mild infection (MI), acute respiratory distress syndrome or death in different persons. Although the basis of these variabilities has not been fully elucidated, some possible findings have been encountered. In the present study, we aimed to reveal genes with different expression profiles by next-generation sequencing of RNA isolated from blood taken from infected patients to reveal molecular causes of different response. Methods: Two healthy, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative control individuals (NCI), two SARS-CoV-2-positive patients who have MI, and two patients who have critical infection (CI) were included in the study. Total RNA was extracted from blood samples and sequenced. Raw RNA-Seq data were analyzed on Galaxy platform for the identification of differentially expressed genes and their pathway involvements. Results: We found that 199 and 521 genes were downregulated in whole blood of COVID-19-positive CI patients compared to NCI and MI patients, respectively. We identified 21 gene ontology pathways commonly downregulated in CI patients compared to both NCI and MI, mostly associated with innate and adaptive immune responses. Three hundred and fifty-four and 600 genes were found to be upregulated compared to NCI and MI, respectively. Upregulated six pathways included genes that function in inflammatory response and inflammatory cytokine release. Conclusion: The transcriptional profile of CI patients deviates more significantly from that of MI in terms of the number of differentially expressed genes, implying that genotypic differences may account for the severity of SARS-CoV-2 infection and inflammatory responses through differential regulation of gene expression. Therefore, further studies that involve whole genome analysis coupled with differential expression analysis are required in order to determine the dynamics of genotype - gene expression profile associations.

12.
Front Immunol ; 13: 824378, 2022.
Article in English | MEDLINE | ID: mdl-35401544

ABSTRACT

The scale of the COVID-19 pandemic forced urgent measures for the development of new therapeutics. One of these strategies is the use of convalescent plasma (CP) as a conventional source for passive immunity. Recently, there has been interest in CP-derived exosomes. In this report, we present a structural, biochemical, and biological characterization of our proprietary product, convalescent human immune plasma-derived exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety and efficacy of this product against SARS-CoV-2 infections in preclinical models.


Subject(s)
COVID-19 , Exosomes , Antibodies, Viral , Antiviral Agents/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive , Pandemics , SARS-CoV-2 , COVID-19 Serotherapy
13.
J Clin Immunol ; 42(3): 634-652, 2022 04.
Article in English | MEDLINE | ID: mdl-35079916

ABSTRACT

PURPOSE: MALT1 deficiency is a combined immune deficiency characterized by recurrent infections, eczema, chronic diarrhea, and failure to thrive. Clinical and immunological characterizations of the disease have not been previously reported in large cohorts. We sought to determine the clinical, immunological, genetic features, and the natural history of MALT-1 deficiency. METHODS: The clinical findings and treatment outcomes were evaluated in nine new MALT1-deficient patients. Peripheral lymphocyte subset analyses, cytokine secretion, and proliferation assays were performed. We also analyzed ten previously reported patients to comprehensively evaluate genotype/phenotype correlation. RESULTS: The mean age of patients and disease onset were 33 ± 17 and 1.6 ± 0.7 months, respectively. The main clinical findings of the disease were recurrent infections (100%), skin involvement (100%), failure to thrive (100%), oral lesions (67%), chronic diarrhea (56%), and autoimmunity (44%). Eosinophilia and high IgE were observed in six (67%) and two (22%) patients, respectively. The majority of patients had normal T and NK cells, while eight (89%) exhibited reduced B cells. Immunoglobulin replacement and antibiotics prophylaxis were mostly ineffective in reducing the frequency of infections and other complications. One patient received hematopoietic stem cell transplantation (HSCT) and five patients died as a complication of life-threatening infections. Analyzing this cohort with reported patients revealed overall survival in 58% (11/19), which was higher in patients who underwent HSCT (P = 0.03). CONCLUSION: This cohort provides the largest analysis for clinical and immunological features of MALT1 deficiency. HSCT should be offered as a curative therapeutic option for all patients at the early stage of life.


Subject(s)
Failure to Thrive , Hematopoietic Stem Cell Transplantation , Diarrhea , Genetic Association Studies , Humans , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Phenotype , Reinfection
14.
Turk J Chem ; 46(4): 1097-1109, 2022.
Article in English | MEDLINE | ID: mdl-37538752

ABSTRACT

The 2-methylpyridine, 2-diethylaminoethyl, and isopentyl linked a series of symmetric and unsymmetric benzimidazolium salts 2a-e were prepared and used in the synthesis of silver-N-heterocyclic carbene (NHC) complexes (3a-e). The Ru(II)-NHC complexes (4a-h) were synthesized via transmetalation reaction from 3a-e. 4a-h complexes were converted to Ru(II)-NHC.HCl complexes (5ah) by HCl solution of diethyl ether and characterized by different spectroscopic techniques such as 1H and 13C NMR, LC/MS-Q-TOF, FT-IR, elemental analysis, and melting point detection. We examined the effect of the structural difference of complexes on anticancer activity via different arenes and metal centers. Antiproliferative activity of 5a-h and 3a was tested against human cervix adenocarcinoma (HeLa) and rat glioblastoma (C6) cell lines by ELISA assay. The IC50 value of 5b, 5c and 5e complexes exhibited good cytotoxic activity than cisplatin on C6 (14.2 ± 0.5 mM; 16.2 ± 0.4 mM; 24.2 ± 0.7 mM, respectively) and HeLa (11.1 ± 0.5 mM; 13.7 ± 0.3 mM; 22.8 ± 0.8 mM, respectively) cell lines.

15.
Anticancer Agents Med Chem ; 22(3): 566-578, 2022.
Article in English | MEDLINE | ID: mdl-33602077

ABSTRACT

BACKGROUND: Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by Non-Small Cell Lung Cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. OBJECTIVE: In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for nonsmall cell lung adenocarcinoma patients. METHODS: Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known Mechanism of Action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. RESULTS: This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with the molecular mechanism of resistance to anticancer drugs in NSCLC cells. CONCLUSION: To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Antineoplastic Agents/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Adenocarcinoma of Lung/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Signal Transduction/drug effects
16.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34678509

ABSTRACT

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Subject(s)
Acetates/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cyclopropanes/pharmacology , Quinolines/pharmacology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Sulfides/pharmacology , A549 Cells , Acetates/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cyclopropanes/chemistry , Drug Repositioning , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neutralization Tests , Protein Conformation , Quinolines/chemistry , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Sulfides/chemistry , Vero Cells , Virus Internalization/drug effects
17.
Allergy ; 77(1): 258-270, 2022 01.
Article in English | MEDLINE | ID: mdl-34519053

ABSTRACT

BACKGROUND: Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the four structural proteins of SARS-CoV-2. METHODS: VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography, and characterized by tunable-resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. RESULTS: Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN-adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1-biased T-cell responses, reduced virus load, and prevented lung pathology upon live virus challenge in vaccinated animals. CONCLUSION: These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , HEK293 Cells , Humans , SARS-CoV-2
18.
Med Oncol ; 38(7): 84, 2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34146171

ABSTRACT

The objective of this study is to investigate the antiproliferative and cytotoxic properties and the action mechanism of substituted quinoline and tetrahydroquinolines 3, 4, 5, 7, and 8 against rat glioblastoma (C6), human cervical cancer (HeLa), human adenocarcinoma (HT29) cancer cell lines by BrdU Cell Proliferation ELISA, Lactate Dehydrogenase, DNA laddering and Topoisomerase I assays. The results of the study showed that 6,8-dibromotetrahydroquinoline 3 possess in vitro antiproliferative activity against C6, HeLa, and HT29 cell lines while morpholine/piperazine substituted quinoline 7 and 8 showed selective antiproliferative activity on C6 cell line with IC50 values 47.5 and 46.3 µg/mL, respectively. Moreover, 6,8-dibromoTHQ 3 caused DNA fragmentation while it did not inhibit the Topoisomerase I (Topo I) enzyme. On the other hand, compound 8 did not cause DNA laddering while 8 inhibited the Topo I enzyme. According to these results, 6,8-dibromoTHQ 3 stimulates apoptosis on the C6 cell line while 6,8-dibromo-3-morhonilylquinoline (8) inhibits the Topo I enzyme to cause antiproliferative activity.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Molecular Docking Simulation/methods , Quinolines/chemistry , Quinolines/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , HT29 Cells , HeLa Cells , Humans , MCF-7 Cells
19.
Mol Biol Rep ; 48(4): 3439-3449, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33999319

ABSTRACT

Heat shock protein 90 (Hsp90) is a key chaperone that is abnormally expressed in cancer cells, and therefore, designing novel compounds to inhibit chaperone activities of the Hsp90 is a promising therapeutic approach for cancer drug discovery. Debio-0932 is a second-generation Hsp90 inhibitor that exhibited promising anticancer activity against a wide variety of cancer types with a strong binding affinity for Hsp90 and high oral bioavailability. Anticancer activities of the Debio-0932 were tested in MCF-7 and MDA-MB-231 cell lines. Molecular docking results indicated that Debio-0932 was selectively bound to the ATP binding pocket of the Hsp90 with an estimated free energy of binding - 7.24 kcal/mol. Antiproliferative activity of Debio-0932 was determined by XTT assay and Debio-0932 exhibited a cytotoxic effect on MCF-7 and MDA-MB-231 cells in a time and dose-depended manner. Apoptosis inducer role of Debio-0932 was evaluated in MCF-7 and MDA-MB-231 cells with fluorometric apoptosis/necrosis detection kit. Treatment with Debio-0932 stimulated apoptosis in both breast cancer cell lines. mRNA and protein expression levels of Bax, Bcl-2 and Casp-9 were determined in MCF-7 and MDA-MB-231 cells by RT-PCR and Western blotting respectively. Debio-0932 stimulated the down-regulation of anti-apoptotic protein Bcl-2 and the up-regulation of apoptotic protein Bax and cleavage of Casp-9 in cancer cells. Moreover, the anti-invasive potential of Debio-0932 was evaluated in endothelial cells (HUVEC) by wound-healing assay. Debio-0932 decreased the migration of HUVEC cells as compared to the control group. These results indicate that Debio-0932 is a promising compound to treat triple-negative breast cancer and hormone receptor-positive breast cancer, and their metastases.


Subject(s)
Apoptosis , Benzodioxoles/pharmacology , Breast Neoplasms/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Imidazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzodioxoles/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/physiopathology , Caspase 9/genetics , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells , Humans , Imidazoles/therapeutic use , MCF-7 Cells , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/genetics
20.
Sci Rep ; 10(1): 12472, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719357

ABSTRACT

Four new dicyanoargentate(I)-based complexes 1-4 were synthesized from certain metal ions with a tetradentate ligand [N, N-bis (2-hydroxyethyl) -ethylenediamine; N-bishydeten] and determined by diverse procedures (elemental, thermal, FT-IR, ESI-MS for 1-3 and, magnetic susceptibility and EPR for 1, and 2) including crystal analysis of 4. The crystal method revealed that complex 4 has a sandwich-type like polymeric chemical structure with layers formed by [Cd(N-bishydeten)2]2+ cations and [Ag(CN)2]- anions. The complexes were further characterized by fluorescence and UV spectroscopy to determine their physicochemical features. The complexes displayed a DNA binding activity within the same range as found for cisplatin, in addition to their strong stability in the presence of the physiological buffer system. The complexes were also investigated for pharmacological properties like interaction with DNA/Bovine serum albumin, anticancer and antibacterial activities. Physicochemical studies of DNA with the complexes suggested that the interaction mode between them are possibly both intercalative and groove binding types. These spectroscopic measurements also show that there may be a binding tendency between BSA and the complexes via hydrogen or Van der Waals bonds. The viability tests demonstrated that all the complexes exhibited antibacterial (1-4) and anticancer effects (2-4) toward ten diverse bacterial strains and three tumor cells (HT-29 colon adenocarcinoma, HeLa cervical cancer, and C6 glioma), respectively.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , HT29 Cells , HeLa Cells , Humans , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...