Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Cancer Prev ; 28(2): 64-74, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37434799

ABSTRACT

The application of immunohistochemistry (IHC) for molecular characterization of breast cancer (BC) is of paramount importance; however, it is not universally standardized, subject to observer variability and quantifying is a challenge. An alternative molecular technology, such as endpoint reverse transcription (RT)-PCR gene expression analysis, may improve observer variability and diagnostic accuracy. This study was intended to compare IHC with the RT-PCR based technique and assess the potential of RT-PCR for molecular subtyping of BC. In this comparative cross-sectional study, 54 BC tissues were collected from three public hospitals in Addis Ababa and shipped to Gynaecology department at Martin-Luther University (Germany) for laboratory analysis. Only 41 samples were qualified for IHC and RT-PCR investigation of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 protein expression analysis. Kappa statistics was used to assess the concordance between the two techniques. The overall percent agreement between RT-PCR and IHC was 68.3% for ER (positive percent agreement [PPA] 71.1%; negative percent agreement [NPA] 33.3%), 39.0% for PR (PPA 14.3%; NPA 92.3%), and 82.9% for HER2 (PPA 62.5%; NPA 87.9%). Cohen's κ-values of 0.018 (< 0.20), 0.045 (< 0.200), and 0.481 (0.41-0.60) were generated for ER, PR, and HER2, respectively. Concordance for molecular subtypes was only 56.1% (23/41) and 0.20 kappa value. IHC and endpoint RT-PCR techniques have shown to be discordant for 43% samples. Molecular subtyping using endpoint RT-PCR was fairly concordant with IHC. Thus, endpoint RT-PCR may give an objective result, and can be applied for BC subtyping.

2.
Clin Epigenetics ; 14(1): 107, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030244

ABSTRACT

Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.


Subject(s)
Nanopore Sequencing , Neoplasms , DNA Methylation , Epigenesis, Genetic , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
3.
Int J Gen Med ; 14: 1437-1447, 2021.
Article in English | MEDLINE | ID: mdl-33907448

ABSTRACT

BACKGROUND: Hyperuricemia is related not only to an increased risk of gouty arthritis but also to an increased risk of cardiovascular diseases, resistant hypertension, insulin resistance and progression of type 2 diabetes mellitus. However, to the best of our knowledge, the prevalence of hyperuricemia and its associated factors have rarely been assessed in Ethiopian populations. Therefore, this study aimed to determine the prevalence of hyperuricemia and its associated factors among adult staff members of the Ethiopian Public Health Institute. METHODS: An institution-based cross-sectional study was conducted from July 1 to October 28, 2018. A total of 402 study participants were selected using a simple random sampling technique. An interviewer-administered questionnaire was used to collect the data. A blood sample of approximately 5 mL was collected from each study participant after overnight fasting through standardized methods for biochemical tests, and analyses were carried out with an automated COBAS 6000 analyzer. Data analysis was performed by SPSS version 20 software. The factors associated with the outcome variable were identified by bivariable and multivariable logistic regression analyses, and a p value <0.05 was used to declare statistical significance. RESULTS: The mean age of the study participants was 37.13±10.5 (mean ± SD), and 51.5% of the participants were male. The overall prevalence of hyperuricemia (>5.7 mg/dL for females and >7 mg/dL for males) was found to be 31.0%. The multivariable logistic analysis revealed that age (AOR=1.59, 95% CI 1.01-2.78), sex (AOR=1.66, 95% CI 1.02-2.70), cigarette smoking (AOR=2.05, 95% CI 1.01-4.19) and serum low-density lipoprotein (LDL) (AOR=1.70, 95% CI 1.01-2.87) were significantly associated with hyperuricemia. CONCLUSION: The prevalence of hyperuricemia was relatively high compared to similar studies. Early screening for hyperuricemia in the general population, especially in those who are smokers, of older age and with high serum LDL levels, is vital to control its adverse effects at an early stage.

SELECTION OF CITATIONS
SEARCH DETAIL