ABSTRACT
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Subject(s)
Diabetes Mellitus , Genital Diseases, Female , Hepatolenticular Degeneration , Neoplasms , Female , Humans , CopperABSTRACT
BACKGROUND: Nitric oxide and GnRH are biological factors that participate in the regulation of reproductive functions. To our knowledge, there are no studies that link NO and GnRH in the sympathetic ganglia. Thus, the aim of the present work was to investigate the influence of NO on GnRH release from the coeliac ganglion and its effect on luteal regression at the end of pregnancy in the rat. METHODS: The ex vivo system composed by the coeliac ganglion, the superior ovarian nerve, and the ovary of rats on day 21 of pregnancy was incubated for 180 min with the addition, into the ganglionic compartment, of L-NG-nitro arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. The control group consisted in untreated organ systems. RESULTS: The addition of L-NAME in the coeliac ganglion compartment decreased NO as well as GnRH release from the coeliac ganglion. In the ovarian compartment, and with respect to the control group, we observed a reduced release of GnRH, NO, and noradrenaline, but an increased production of progesterone, estradiol, and expression of their limiting biosynthetic enzymes, 3ß-HSD and P450 aromatase, respectively. The inhibition of NO production by L-NAME in the coeliac ganglion compartment also reduced luteal apoptosis, lipid peroxidation, and nitrotyrosine, whereas it increased the total antioxidant capacity within the corpora lutea. CONCLUSION: Collectively, the results indicate that NO production by the coeliac ganglion modulates the physiology of the ovary and luteal regression during late pregnancy in rats.
Subject(s)
Corpus Luteum/innervation , Corpus Luteum/metabolism , Gonadotropin-Releasing Hormone/metabolism , Nitric Oxide/metabolism , Animals , Drug Interactions , Female , Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/metabolism , Gestational Age , Gonadotropin-Releasing Hormone/pharmacology , Nervous System/drug effects , Nervous System/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism , Nitric Oxide/pharmacology , Ovary/innervation , Ovary/metabolism , Pregnancy , RatsABSTRACT
NEW FINDINGS: What is the central question of this study? The processes involved in luteal involution have not yet been clarified and, in general, have been studied only from a hormonal point of view. We investigated whether progesterone, from the coeliac ganglion through the superior ovarian nerve, is able to modify the luteal regression of late pregnancy in the rat. What is the main finding and its importance? We showed that the luteal regression might be reversed by the neural effect of progesterone and demonstrated the presence of its receptors in the coeliac ganglion. This suggests that the peripheral neural pathway, through neuron-hormone interaction, represents an additional mechanism to control luteal function in addition to the classical endocrine regulation. The corpus luteum (CL) is a transitory endocrine gland that produces progesterone (P). At the end of its useful life, it suffers a process of functional and structural regression until its complete disappearance from the ovary. To investigate whether P is able to regulate the process of luteal regression through the peripheral neural pathway, we used the coeliac ganglion (CG)-superior ovarian nerve-ovary system from rats on day 21 of pregnancy. We stimulated the CG with P and analysed the functional regression through ovarian P release measured by radioimmunoassay, expression by RT-PCR and activity of luteal 3ß- and 20α-hydroxysteroid dehydrogenase (anabolic and catabolic P enzymes, respectively). The luteal structural regression was evaluated through a study of apoptosis measured by TUNEL assay and the expression of apoptotic factors, such as Bcl-2, Bax, Fas and Fas ligand (FasL) by RT-PCR. To explore whether the effects mediated by P on the CL may be associated with P receptors, their presence in the CG was investigated by immunohistochemistry. In the group stimulated with P in the CG, the ovarian P release and the 3ß-hydroxysteroid dehydrogenase activity increased, whereas the expression and activity of 20α-hydroxysteroid dehydrogenase decreased. In addition, a decrease in the number of apoptotic nuclei and a decrease of the expression of FasL were observed. We demonstrated the presence of P receptors in the CG. Overall, our results suggest that the regression of the CL of late pregnancy may be reprogrammed through the peripheral neural pathway, and this effect might be mediated by P bound to its receptor in the CG.
Subject(s)
Corpus Luteum/physiology , Ganglia, Sympathetic/physiology , Luteolysis/physiology , Neurotransmitter Agents/pharmacology , Progesterone/pharmacology , Receptors, Progesterone/physiology , Animals , Corpus Luteum/drug effects , Female , Ganglia, Sympathetic/drug effects , Luteolysis/drug effects , Neurotransmitter Agents/physiology , Organ Culture Techniques , Ovary/drug effects , Ovary/physiology , Pregnancy , Progesterone/physiology , Rats , Rats, Sprague-Dawley , Receptors, Progesterone/agonistsABSTRACT
Whether prolactin (PRL) has a luteotrophic or luteolytic effect in the rat ovary depends on the nature of the corpora lutea present in the ovaries and the hormonal environment to which they are exposed. The aim was to investigate the effect of PRL acting on the coeliac ganglion (CG) on the function of the corpora lutea on day 4 postpartum under either lactating or non-lactating conditions, using the CG-superior ovarian nerve-ovary system. The ovarian release of progesterone (P), estradiol, PGF2α, and nitrites was assessed in the ovarian compartment at different incubation times. Luteal mRNA expression of 3ß-HSD, 20α-HSD, aromatase, PGF2α receptor, iNOS, Bcl-2, Bax, Fas and FasL was analysed in the corpus luteum of pregnancy at the end of the experiments. Comparative analysis of control groups showed that the ovarian release of P, nitrites, and PGF2α, the expression of PGF2α receptor, and the Bcl-2/Bax ratio were lower in non-lactating rats, with increased release of estradiol, and higher expression of aromatase, Fas and FasL, demonstrating the higher luteal functionality in ovaries of lactating animals. PRL added to the CG compartment increased the ovarian release of P, estradiol, nitrites and PGF2α, and decreased the Bcl-2/Bax ratio in non-lactating rats; yet, with the exception of a reduction in the release of nitrites, such parameters were not modified in lactating animals. Together, these data suggest that the CG is able to respond to the effect of PRL and, via a neural pathway, fine-tune the physiology of the ovary under different hormonal conditions.
Subject(s)
Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/metabolism , Lactation/drug effects , Lactation/metabolism , Ovary/innervation , Ovary/metabolism , Postpartum Period/metabolism , Prolactin/pharmacology , 20-alpha-Hydroxysteroid Dehydrogenase/genetics , 3-Hydroxysteroid Dehydrogenases/genetics , Animals , Aromatase/genetics , Estradiol/metabolism , Fas Ligand Protein/genetics , Female , Nitrites/metabolism , Ovary/drug effects , Postpartum Period/drug effects , Pregnancy , Progesterone/metabolism , Prostaglandins/metabolism , Radioimmunoassay , Rats , Receptors, Prostaglandin/genetics , Reverse Transcriptase Polymerase Chain Reaction , bcl-2-Associated X Protein/geneticsABSTRACT
There is evidence suggesting that estradiol (E(2)) regulates the physiology of the ovary and the sympathetic neurons associated with the reproductive function. The objective of this study was to investigate the effect of E(2) on the function of late pregnant rat ovaries, acting either directly on the ovarian tissue or indirectly via the superior ovarian nerve (SON) from the celiac ganglion (CG). We used in vitro ovary (OV) or ex vivo CG-SON-OV incubation systems from day 21 pregnant rats. Various concentrations of E(2 )were added to the incubation media of either the OV alone or the ganglion compartment of the CG-SON-OV system. In both experimental schemes, we measured the concentration of progesterone in the OV incubation media by radioimmunoassay at different times. Luteal messenger RNA (mRNA) expression of 3ß-hydroxysteroid dehydrogenase (3ß-HSD) and 20α-hydroxysteroid dehydrogenase (20α-HSD) enzymes, respectively, involved in progesterone synthesis and catabolism, and of antiapoptotic B-cell lymphoma 2 (Bcl-2) and proapoptotic Bcl-2-associated X protein (Bax), were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) at the end of the incubation period. Estradiol added directly to the OV incubation or to the CG of the CG-SON-OV system caused a decline in the concentration of progesterone accumulated in the incubation media. In addition, E(2), when added to the OV incubation, decreased the expression of 3ß-HSD and the ratio of Bcl-2/Bax. We conclude that through a direct effect on the OV, E(2) favors luteal regression at the end of pregnancy in rats, in association with neural modulation from the CG via the SON.
Subject(s)
Corpus Luteum/drug effects , Estradiol/pharmacology , Ganglia, Sympathetic/drug effects , Luteolysis/drug effects , Ovary/drug effects , Progesterone/metabolism , 20-alpha-Hydroxysteroid Dehydrogenase/genetics , 20-alpha-Hydroxysteroid Dehydrogenase/metabolism , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Corpus Luteum/enzymology , Corpus Luteum/innervation , Corpus Luteum/physiology , Female , Ganglia, Sympathetic/enzymology , Ganglia, Sympathetic/physiology , In Vitro Techniques , Luteolysis/physiology , Ovary/enzymology , Ovary/innervation , Ovary/physiology , Pregnancy , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolismABSTRACT
Mifepristone (MIF) administration to cycling rats at proestrus induces hypersecretion of prolactin (PRL) at the following estrus. We aimed to assess whether this effect is due to the antiprogesterone or antiglucocorticoid action of MIF and to help underscore the nature of the circulating hormone(s) regulating PRL secretion at estrus. Female cycling rats in proestrus were treated with vehicle; the progesterone (Pg) and glucocorticoid receptor antagonists, MIF (5âmg/kg) or ORG-33628 (5âmg/kg); the glucocorticoid agonist dexamethasone (DEX; 27âmg/kg)±MIF; or the inhibitor of steroid synthesis aminoglutethimide (AG; 150âmg/kg)±MIF. The animals' blood was sampled the same day at 1800âh and at 1800âh of the following day to assess for circulating PRL and Pg levels. To distinguish antiglucocorticoid from antiprogesterone effects of MIF, we administered a highly specific neutralizing antibody against Pg. None of the antagonists modified serum PRL values at proestrus but increased PRL levels at estrus. DEX decreased the secretion of PRL at proestrus, yet the effect was entirely blocked by MIF. Furthermore, DEX decreased PRL at estrus in a MIF-reversible manner, suggesting that adrenal corticoids during proestrous may regulate PRL secretion at estrus. AG increased PRL secretion at estrus, whereas its association with MIF produced an even higher response. PRL concentration at estrus was not modified by the antiprogesterone antibody, suggesting that the effect of MIF is a consequence of its antiglucocorticoid effect and not due to its antiprogesterone properties. In conclusion, PRL secretion in the afternoon of the estrus is most likely regulated by glucocorticoids through an inhibitory action.
Subject(s)
Estrus/metabolism , Glucocorticoids/pharmacology , Prolactin/metabolism , Animals , Circadian Rhythm/physiology , Dexamethasone/pharmacology , Estrus/physiology , Female , Mifepristone/pharmacology , Organ Size/drug effects , Organ Size/physiology , Rats , Rats, Wistar , Secretory Pathway/drug effects , Uterus/anatomy & histology , Uterus/drug effectsABSTRACT
Androstenedione can affect luteal function via a neural pathway in the late pregnant rat. Here, we investigate whether androstenedione is capable of opposing to regression of pregnancy corpus luteum that occurs after parturition, indirectly, from the coeliac ganglion. Thus, androstenedione was added into the ganglionar compartment of an ex vivo coeliac ganglion-superior ovarian nerve-ovary system isolated from non-lactating rats on day 4 postpartum. At the end of incubation, we measured the abundance of progesterone, androstenedione and oestradiol released into the ovarian compartment. Luteal mRNA expression and activity of progesterone synthesis and degradation enzymes, 3ß-hydroxysteroid-dehydrogenase (3ß-HSD) and 20α-hydroxysteroid-dehydrogenase (20α-HSD), respectively, as well as the aromatase, Bcl-2, Bax, Fas and FasL transcript levels, were also determined. Additionally, we measured the ovarian release of norepinephrine, nitric oxide and luteal inducible nitric oxide synthase (iNOS) mRNA expression. The presence of androstenedione in the ganglion compartment significantly increased the release of ovarian progesterone, androstenedione and oestradiol without modifying 3ß-HSD and 20α-HSD activities or mRNA expression. The ovarian release of oestradiol in response to the presence of androstenedione in the ganglion compartment declined with time of incubation in accord with a reduction in the aromatase mRNA expression. Androstenedione added to the ganglion compartment decreased FasL mRNA expression, without affecting luteal Bcl-2, Bax and Fas transcript levels; also increased the release of norepinephrine, decreased the release of nitric oxide and increased iNOS mRNA. In summary, on day 4 after parturition, androstenedione can mediate a luteotropic effect acting at the coeliac ganglion and transmitting to the ovary a signaling via a neural pathway in association with increased release of norepinephrine, decreased nitric oxide release, and decreased expression of FasL.
Subject(s)
Androstenedione/metabolism , Androstenedione/pharmacology , Ganglia, Sympathetic/metabolism , Ovary/metabolism , 20-Hydroxysteroid Dehydrogenases/genetics , 20-Hydroxysteroid Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Chromatography, High Pressure Liquid , Estradiol/metabolism , Female , Ganglia, Sympathetic/drug effects , In Vitro Techniques , Ovary/drug effects , Postpartum Period/metabolism , Pregnancy , Progesterone/metabolism , Rats , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
BACKGROUND: Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1) the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2) the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3) the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. METHODS: The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1) noradrenaline in the ganglion compartment; 2) LH in the ovarian compartment; and 3) noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline) was also measured in the ovarian compartment by HPLC. RESULTS: The most relevant result concerning the action of noradrenaline in the celiac ganglion was found on day 21 of pregnancy resulting in the inhibition of androstenedione release from the ovarian compartment. In addition on day 15 of pregnancy, LH placed in the ovarian compartment led to an inhibition of the release of androstenedione, and this inhibitory effect was further reinforced by the joint action of noradrenaline in the celiac ganglion and LH in the ovary. The levels of catecholamines in the ovarian compartment showed differences among the experiments; of significance, the joint treatment of noradrenaline in the celiac ganglion and LH in the ovary resulted in a remarkable increase in the ovarian levels of noradrenaline and adrenaline when compared to the effect achieved by either one of the compounds added alone. CONCLUSION: Our results demonstrate that the noradrenergic stimulation of the celiac ganglion reinforces the LH-induced inhibition of androstenedione production by the ovary of late pregnant rats, and that this effect is associated with marked changes in the release of catecholamines in the ovary.
Subject(s)
Androstenedione/metabolism , Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/physiology , Luteinizing Hormone/pharmacology , Ovary/drug effects , Ovary/metabolism , Animals , Female , Norepinephrine/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Time FactorsABSTRACT
BACKGROUND: In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL), which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP), in which the CL are mainly under the control of pituitary prolactin (PRL), is not well known. The objectives of this investigation were: i) to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD), involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD), involved in progesterone catabolism; and ii) to determine the role of decidualization on progesterone metabolism in PSP. METHODS: PSP was induced mechanically at 10:00 h on the estrus of 4-day cycling Wistar rats, and the stimulus for decidualization was provided by scratching the uterus on day 4 of PSP. 3betaHSD and 20alphaHSD activities were measured in the CL isolated from ovaries of PSP rats using a spectrophotometric method. Serum concentrations of progesterone, PRL, androstenedione, and estradiol were measured by radioimmunoassay (RIA). RESULTS: The PSP stage induced mechanically in cycling rats lasted 11.3 +/- 0.09 days (n = 14). Serum progesterone concentration was high until day 10 of PSP, and declined thereafter. Serum PRL concentration was high on the first days of PSP but decreased significantly from days 6 to 9, having minimal values on days 10 and 11. Luteal 3betaHSD activities were elevated until day 6 of PSP, after which they progressively declined, reaching minimal values at the end of PSP. Luteal 20alphaHSD activities were very low until day 9, but abruptly increased at the end of PSP. When the deciduoma was induced by scratching the uterus of pseudopregnant animals on day 4 (PSP+D), PSP was extended to 18 +/- 2.2 days (n = 8). In PSP + D rats, serum progesterone and PRL levels, and luteal 3betaHSD activities were higher than in pseudopregnant rats on day 11. Decidualization also prevented the increase in luteal 20alphaHSD activities observed on day 11 of PSP. Administration of the dopaminergic agonist CB154 in PSP + D rats on day 10 of PSP induced a decline in both serum PRL and progesterone on day 11 of PSP, values that were not different from that of pseudopregnant controls. CONCLUSIONS: We have established that during the final period of PSP a decline in progesterone biosynthesis occurs before the increase in progesterone catabolism. We have also shown that decidualization in pseudopregnant rats extends the life of the CL by prolonging the production of pituitary PRL, and by maintaining high 3betaHSD and low 20alphaHSD activities within the CL leading to sustained production of progesterone.
Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , 20-Hydroxysteroid Dehydrogenases/metabolism , Corpus Luteum/enzymology , Deciduoma/physiology , Pseudopregnancy/enzymology , 17-Hydroxysteroid Dehydrogenases/blood , 20-Hydroxysteroid Dehydrogenases/blood , Androstenedione/blood , Animals , Bromocriptine/pharmacology , Dopamine/metabolism , Estradiol/blood , Female , Luteal Phase/blood , Luteal Phase/physiology , Progesterone/biosynthesis , Progesterone/blood , Prolactin/biosynthesis , Prolactin/blood , Pseudopregnancy/blood , Rats , Rats, WistarABSTRACT
Progesterone production by the corpus luteum (CL) is essential for preparation of the endometrium for implantation and for the maintenance of gestation. Progesterone modulates its own production and opposes functional luteal regression induced by exogenous agents, such as prostaglandin F(2alpha). In the present study, we evaluated whether progesterone is also capable of interfering with the process of structural luteal regression, which is characterized by a decrease in weight and size of the gland because of programmed cell death (i.e., apoptosis). We have found that a low number of luteal cells undergo apoptosis throughout gestation. On the day of parturition, but following the initial decline in endogenous progesterone production, a small increase in the number of luteal cells undergoing cell death was observed. This increase in apoptotic cells continued postpartum, reaching dramatic levels by Day 4 postpartum, and was accompanied by a marked decrease in average luteal weight. We have established that the exogenous administration of progesterone significantly reduces the decline in luteal weight observed during structural luteal regression postpartum. This effect was associated with a decrease in the number of cells undergoing apoptosis and with enhanced circulating levels of androstenedione. Furthermore, in vivo administration of progesterone delayed the occurrence of DNA fragmentation in postpartum CL incubated in serum-free conditions. Finally, we have shown that neither the CL of gestation nor the newly formed CL after postpartum ovulation express the classic progesterone-receptor mRNA. In summary, the present results support a protective action of progesterone on the function and survival of the CL through inhibition of apoptosis and stimulation of androstenedione production. Furthermore, this effect is carried out in the absence of classic progesterone receptors.
Subject(s)
Corpus Luteum/drug effects , Progesterone/pharmacology , Androstenedione/biosynthesis , Animals , Apoptosis/drug effects , Base Sequence , Corpus Luteum/cytology , Corpus Luteum/metabolism , Female , Luteolysis/drug effects , Luteolysis/metabolism , Postpartum Period , Pregnancy , Progesterone/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolismABSTRACT
Androgens, in concert with lactogenic hormones, contribute to the maintenance of function of the corpus luteum (CL) in pregnant rats. Whereas some of the androgenic actions in the CL are clearly mediated by intracrine conversion to estrogen, pure androgenic effects are also implicated in the regulation of this transient endocrine gland. In this report, we have established, to our knowledge for the first time, the expression of androgen receptor (AR) mRNA and protein throughout gestation in the rat CL. We have found that the AR remains expressed in the CL of gestation on Day 4 postpartum and becomes expressed in the newly formed CL after postpartum ovulation. An AR immunoreactive protein was identified in the CL of pregnancy as well as in prostate and epididymis, which were used as positive controls. The luteal AR protein had mainly nuclear localization, yet some diffuse cytoplasmic staining was also observed. Moreover, we have established that androstenedione, the main circulating androgen in pregnant rats, significantly reduces the decline in luteal weight observed during postpartum structural regression. This effect was correlated with a decrease in the number of cells undergoing apoptosis and with enhanced levels of circulating progesterone. In addition, in vivo administration of androstenedione delayed the occurrence of DNA fragmentation in postpartum CL incubated in serum-free conditions. Finally, we have shown that the interference with apoptosis in vitro elicited by androstenedione is accompanied by an increased capacity of the CL to secrete progesterone. In summary, the results of this study have established that the rat CL expresses AR throughout pregnancy and after parturition, and they have defined a potential role for androstenedione in opposing postpartum luteal regression through inhibition of apoptosis and stimulation of progesterone production.