Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Biotechnol Lett ; 43(3): 691-700, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33386499

ABSTRACT

OBJECTIVES: To search for new alkaliphilic cellulases and to improve their efficiency on crystalline cellulose through molecular engineering RESULTS: Two novel cellulases, BpGH9 and BpGH48, from a Bacillus pumilus strain were identified, cloned and biochemically characterized. BpGH9 is a modular endocellulase belonging to the glycoside hydrolase 9 family (GH9), which contains a catalytic module (GH) and a carbohydrate-binding module belonging to class 3 and subclass c (CBM3c). This enzyme is extremely tolerant to high alkali pH and remains significantly active at pH 10. BpGH48 is an exocellulase, belonging to the glycoside hydrolase 48 family (GH48) and acts on the reducing end of oligo-ß1,4 glucanes. A truncated form of BpGH9 and a chimeric fusion with an additional CBM3a module was constructed. The deletion of the CBM3c module results in a significant decline in the catalytic activity. However, fusion of CBM3a, although in a non native position, enhanced the activity of BpGH9 on crystalline cellulose. CONCLUSIONS: A new alkaliphilic endocellulase BpGH9, was cloned and engineered as a fusion protein (CBM3a-BpGH9), which led to an improved activity on crystalline cellulose.


Subject(s)
Bacillus pumilus/enzymology , Bacterial Proteins , Cellulases , Recombinant Fusion Proteins , Bacillus pumilus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellulases/chemistry , Cellulases/genetics , Cellulases/metabolism , Cellulose/metabolism , Enzyme Stability , Escherichia coli , Kenya , Lakes/microbiology , Protein Engineering , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
2.
Chemistry ; 27(9): 3142-3150, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33150981

ABSTRACT

Bacterial sialidases (SA) are validated drug targets expressed by common human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, or Clostridium perfringens. Noncovalent inhibitors of bacterial SA capable of reaching the submicromolar level are rarely reported. In this work, multi- and polyvalent compounds are developed, based on the transition-state analogue 2-deoxy-2,3-didehydro-N-acetylneuraminic (DANA). Poly-DANA inhibits the catalytic activity of SA from S. pneumoniae (NanA) and the symbiotic microorganism B. thetaiotaomicron (BtSA) at the picomolar and low nanomolar levels (expressed in moles of molecules and of DANA, respectively). Each DANA grafted to the polymer surpasses the inhibitory potential of the monovalent analogue by more than four orders of magnitude, which represents the highest multivalent effect reported so far for an enzyme inhibition. The synergistic interaction is shown to operate exclusively in the catalytic domain, and not in the flanked carbohydrate-binding module (CBM). These results offer interesting perspectives for the multivalent inhibition of other SA families lacking a CBM, such as viral, parasitic, or human SA.


Subject(s)
Neuraminidase/antagonists & inhibitors , Streptococcus pneumoniae/enzymology , Catalytic Domain/drug effects , Neuraminidase/metabolism , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/drug effects
3.
J Am Chem Soc ; 142(5): 2120-2124, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31917561

ABSTRACT

Glycoside hydrolases and phosphorylases are two major classes of enzymes responsible for the cleavage of glycosidic bonds. Here we show that two GH84 O-GlcNAcase enzymes can be converted to efficient phosphorylases by a single point mutation. Noteworthy, the mutated enzymes are over 10-fold more active than naturally occurring glucosaminide phosphorylases. We rationalize this novel transformation using molecular dynamics and QM/MM metadynamics methods, showing that the mutation changes the electrostatic potential at the active site and reduces the energy barrier for phosphorolysis by 10 kcal·mol-1. In addition, the simulations unambiguously reveal the nature of the intermediate as a glucose oxazolinium ion, clarifying the debate on the nature of such a reaction intermediate in glycoside hydrolases operating via substrate-assisted catalysis.


Subject(s)
Glycoside Hydrolases/metabolism , Phosphorylases/metabolism , Point Mutation , Catalytic Domain , Glycoside Hydrolases/genetics
4.
J Vis Exp ; (166)2020 12 19.
Article in English | MEDLINE | ID: mdl-33393519

ABSTRACT

Genetic code expansion is a powerful tool to introduce unnatural amino acids (UAAs) into proteins to modify their characteristics, to study or create new protein functions or to have access to protein conjugates. Stop codon suppression, in particular amber codon suppression, has emerged as the most popular method to genetically introduce UAAs at defined positions. This methodology is herein applied to the preparation of a carrier protein containing an UAA harboring a bioorthogonal functional group. This reactive handle can next be used to specifically and efficiently graft a synthetic oligosaccharide hapten to provide a homogeneous glycoconjugate vaccine. The protocol is limited to the synthesis of glycoconjugates in a 1:1 carbohydrate hapten/carrier protein ratio but amenable to numerous pairs of biorthogonal functional groups. Glycococonjugate vaccine homogeneity is an important criterion to ensure complete physico-chemical characterization, thereby, satisfying more and more demanding drug regulatory agency recommendations, a criterion which is unmet by classical conjugation strategies. Moreover, this protocol makes it possible to finely tune the structure of the actual conjugate vaccine, giving rise to tools to address structure-immunogenicity relationships.


Subject(s)
Amino Acids/metabolism , Click Chemistry/methods , Glycoconjugates/metabolism , Vaccines/immunology , Amino Acids/chemistry , Antigens/metabolism , Carbohydrates/chemistry , Endopeptidases/metabolism , Histidine/metabolism , Lysine/metabolism , Mass Spectrometry , Oligopeptides/metabolism , Plasmids/metabolism , Recombinant Proteins/biosynthesis
5.
Protein Eng Des Sel ; 32(7): 309-316, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31603224

ABSTRACT

Using the information available in the sequences of well-characterized transglycosidases found in plants, mutations were introduced in the glycoside hydrolase of the bacterium Thermus thermophilus, with the aim of turning it into an efficient transglycosidase. All mutants happen to have fair catalytic efficiencies, being at worst 25 times less efficient than the wild type. Noteworthy, W120F, one of our high transglycosylation yield (≈ 50%) mutants, is only two times less efficient than the wild type. Interestingly, while in the wild type the sidechain of the acid-base is only found able to sample a pair of equivalent conformations during 0.5-µs-long molecular dynamics simulations, its flexibility is much higher in the case of the high transglycosylation yield mutants. Our results thus suggest that engineering the flexibility of the acid-base of a retaining glycoside hydrolase could be a general way to turn it into an efficient transglycosidase.


Subject(s)
Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Protein Engineering , Thermus thermophilus/enzymology , Biocatalysis , Glycoside Hydrolases/chemistry , Glycosylation , Hydrogen-Ion Concentration , Kinetics , Molecular Dynamics Simulation , Mutation , Protein Conformation , Substrate Specificity
6.
J Biol Chem ; 294(17): 6923-6939, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30846563

ABSTRACT

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and ß-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (ß-agarases and ß-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family ß-agarases and ß-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical ß-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from ß-porphyranases and classical ß-agarases.


Subject(s)
Agar/metabolism , Bacterial Proteins/isolation & purification , Flavobacteriaceae/enzymology , Hydrolases/isolation & purification , Amino Acid Sequence , Aquatic Organisms/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Hydrogen-Ion Concentration , Hydrolases/chemistry , Hydrolases/metabolism , Phylogeny , Protein Conformation , Seawater/microbiology
7.
Chemistry ; 25(9): 2358-2365, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30516296

ABSTRACT

Sialidases (SAs) hydrolyze sialyl residues from glycoconjugates of the eukaryotic cell surface and are virulence factors expressed by pathogenic bacteria, viruses, and parasites. The catalytic domains of SAs are often flanked with carbohydrate-binding module(s) previously shown to bind sialosides and to enhance enzymatic catalytic efficiency. Herein, non-hydrolyzable multivalent thiosialosides were designed as probes and inhibitors of V. cholerae, T. cruzi, and S. pneumoniae (NanA) sialidases. NanA was truncated from the catalytic and lectinic domains (NanA-L and NanA-C) to probe their respective roles upon interacting with sialylated surfaces and the synthetically designed di- and polymeric thiosialosides. The NanA-L domain was shown to fully drive NanA binding, improving affinity for the thiosialylated surface and compounds by more than two orders of magnitude. Importantly, each thiosialoside grafted onto the polymer was also shown to reduce NanA and NanA-C catalytic activity with efficiency that was 3000-fold higher than that of the monovalent thiosialoside reference. These results extend the concept of multivalency for designing potent bacterial and parasitic sialidase inhibitors.

8.
Chembiochem ; 18(24): 2428-2440, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29024281

ABSTRACT

Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7.


Subject(s)
Galectins/antagonists & inhibitors , Microarray Analysis , Amino Sugars , Animals , Fluorescence Polarization , Galectin 3/antagonists & inhibitors , Humans , Oxazoles/chemistry , Sensitivity and Specificity
9.
J Org Chem ; 82(14): 7114-7122, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28631470

ABSTRACT

Koenigs-Knorr glycosylation of acceptors with more than one free hydroxyl group by 2,3,5,6-tetrabenzoyl galactofuranosyl bromide was performed using diphenylborinic acid 2-aminoethyl ester (DPBA) as inducer of regioselectivity. High regioselectivity for the glycosylation on the equatorial hydroxyl group of the acceptor was obtained thanks to the transient formation of a borinate adduct of the corresponding 1,2-cis diol. Nevertheless formation of orthoester byproducts hampered the efficiency of the method. Interestingly electron-withdrawing groups on O-6 or on C-1 of the acceptor displaced the reaction in favor of the desired galactofuranosyl containing disaccharide. The best yield was obtained for the furanosylation of p-nitrophenyl 6-O-acetyl mannopyranoside. Precursors of other disaccharides, found in the glycocalix of some pathogens, were synthesized according to the same protocol with yields ranging from 45 to 86%. This is a good alternative for the synthesis of biologically relevant glycoconjugates.


Subject(s)
Bacteria/chemistry , Disaccharides/chemical synthesis , Fungi/chemistry , Furans/chemistry , Galactosides/chemistry , Trypanosomatina/chemistry , Disaccharides/chemistry , Glycosylation , Molecular Structure , Quantum Theory , Stereoisomerism
10.
Chembiochem ; 18(8): 782-789, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28166391

ABSTRACT

Galectins have been recognized as potential novel therapeutic targets for the numerous fundamental biological processes in which they are involved. Galectins are key players in homeostasis, and as such their expression and function are finely tuned in vivo. Thus, their modes of action are complex and remain largely unexplored, partly because of the lack of dedicated tools. We thus designed galectin inhibitors from a lactosamine core, functionalized at key C2 and C3' positions by aromatic substituents to ensure both high affinity and selectivity, and equipped with a spacer that can be modified on demand to further modulate their physico-chemical properties. As a proof-of-concept, galectin-3 was selectively targeted. The efficacy of the synthesized di-aromatic lactosamine tools was shown in cellular assays to modulate collective epithelial cell migration and to interfere with actin/cortactin localization.


Subject(s)
Amino Sugars/pharmacology , Galectin 3/antagonists & inhibitors , Wound Healing/drug effects , Amino Sugars/chemical synthesis , Amino Sugars/chemistry , Blood Proteins , Cell Line , Cell Movement/drug effects , Cell Polarity/drug effects , Epithelial Cells/drug effects , Epithelial Cells/physiology , Galectin 1/antagonists & inhibitors , Galectins/antagonists & inhibitors , Humans , Keratinocytes/drug effects , Keratinocytes/physiology
11.
Langmuir ; 32(22): 5480-90, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27166821

ABSTRACT

Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.


Subject(s)
Archaeal Proteins/chemistry , DNA-Binding Proteins/chemistry , Organophosphonates/chemistry , Phosphopeptides/chemistry , Phosphoproteins/chemistry , Sulfolobus acidocaldarius/chemistry , Zirconium/chemistry , Surface Properties
12.
Biotechnol Lett ; 38(5): 767-72, 2016 May.
Article in English | MEDLINE | ID: mdl-26758722

ABSTRACT

OBJECTIVES: To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. RESULTS: The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). CONCLUSION: The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.


Subject(s)
Casein Kinase II/metabolism , Protein Processing, Post-Translational , Proteins/isolation & purification , Proteins/metabolism , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Casein Kinase II/genetics , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Phosphorylation , Protein Subunits/genetics , Protein Subunits/metabolism
13.
Glycobiology ; 26(3): 261-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26582607

ABSTRACT

Human milk oligosaccharides (HMOs) are recognized as benefiting breast-fed infants in multiple ways. As a result, there is growing interest in the synthesis of HMOs mimicking their natural diversity. Most HMOs are fucosylated oligosaccharides. α-l-Fucosidases catalyze the hydrolysis of α-l-fucose from the non-reducing end of a glucan. They fall into the glycoside hydrolase GH29 and GH95 families. The GH29 family fucosidases display a classic retaining mechanism and are good candidates for transfucosidase activity. We recently demonstrated that the α-l-fucosidase from Thermotoga maritima (TmαFuc) from the GH29 family can be evolved into an efficient transfucosidase by directed evolution ( Osanjo et al. 2007). In this work, we developed semi-rational approaches to design an α-l-transfucosidase starting with the α-l-fucosidase from commensal bacteria Bifidobacterium longum subsp. infantis (BiAfcB, Blon_2336). Efficient fucosylation was obtained with enzyme mutants (L321P-BiAfcB and F34I/L321P-BiAfcB) enabling in vitro synthesis of lactodifucotetraose, lacto-N-fucopentaose II, lacto-N-fucopentaose III and lacto-N-difucohexaose I. The enzymes also generated more complex HMOs like fucosylated para-lacto-N-neohexaose (F-p-LNnH) and mono- or difucosylated lacto-N-neohexaose (F-LNnH-I, F-LNnH-II and DF-LNnH). It is worth noting that mutation at these two positions did not result in a strong decrease in the overall activity of the enzyme, which makes these variants interesting candidates for large-scale transfucosylation reactions. For the first time, this work provides an efficient enzymatic method to synthesize the majority of fucosylated HMOs.


Subject(s)
Milk, Human/chemistry , Oligosaccharides/chemistry , alpha-L-Fucosidase/chemistry , Amino Sugars/chemistry , Bifidobacterium/enzymology , Fucose/chemistry , Glycosylation , Humans , Infant , Mutation/genetics , Oligosaccharides/chemical synthesis , Polysaccharides/chemistry , Substrate Specificity , alpha-L-Fucosidase/genetics
14.
Org Biomol Chem ; 13(31): 8393-404, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26130402

ABSTRACT

Although leishmaniasis has been studied for over a century, the fight against cutaneous, mucocutaneous and visceral forms of the disease remains a hot topic. This review refers to the parasitic cell wall and more particularly to the constitutive glycoconjugates. The structures of the main glycolipids and glycoproteins, which are species-dependent, are described. The focus is on the disturbance of the lipid membrane by existing drugs and possible new ones, in order to develop future therapeutic agents.


Subject(s)
Antiparasitic Agents/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Glycoconjugates/metabolism , Leishmania/cytology , Leishmania/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Leishmania/metabolism , Molecular Targeted Therapy
15.
Bioconjug Chem ; 26(4): 766-72, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25741759

ABSTRACT

Multivalent iminosugars have recently emerged as powerful tools to inhibit the activities of specific glycosidases. In this work, biocompatible dextrans were coated with iminosugars to form linear and ramified polymers with unprecedently high valencies (from 20 to 900) to probe the evolution of the multivalent inhibition as a function of ligand valency. This study led to the discovery that polyvalent iminosugars can also significantly enhance, not only inhibit, the enzymatic activity of specific glycoside-hydrolase, as observed on two galactosidases, a fucosidase, and a bacterial mannoside phosphorylase for which an impressive 70-fold activation was even reached. The concept of glycosidase activation is largely unexplored, with a unique recent example of small-molecules activators of a bacterial O-GlcNAc hydrolase. The possibility of using these polymers as "artificial enzyme effectors" may therefore open up new perspectives in therapeutics and biocatalysis.


Subject(s)
Coated Materials, Biocompatible/chemistry , Dextrans/chemistry , Glycoside Hydrolases/chemistry , Imino Sugars/chemistry , Enzyme Activation , Ligands , Phosphoric Diester Hydrolases/chemistry , Phosphorylases/chemistry , Polymerization , alpha-L-Fucosidase/chemistry
16.
Glycobiology ; 25(4): 394-402, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25378480

ABSTRACT

Glycoside hydrolases are particularly abundant in all areas of metabolism as they are involved in the degradation of natural polysaccharides and glycoconjugates. These enzymes are classified into 133 families (CAZy server, http://www.cazy.org) in which members of each family have a similar structure and catalytic mechanism. In order to understand better the structure/function relationships of these enzymes and their evolution and to develop new robust evolved glycosidases, we undertook to convert a Family 1 thermostable ß-glycosidase into an exo-ß-N-acetylglucosaminidase. This latter activity is totally absent in Family 1, while natural ß-hexosaminidases belong to CAZy Families 3, 20 and 84. Using molecular modeling, we first showed that the docking of N-acetyl-d-glucosamine in the subsite -1 of the ß-glycosidase from Thermus thermophilus (TtßGly) suggested several steric conflicts with active site amino-acids (N163, E338) induced by the N-acetyl group. Both N163A and N163D-E338G mutations induced significant N-acetylglucosaminidase activity in TtßGly. The double mutant N163D-E338G was also active on the bicyclic oxazoline substrate, suggesting that this mutated enzyme uses a catalytic mechanism involving a substrate-assisted catalysis with a noncovalent oxazoline intermediate, similar to the N-acetylglucosaminidases from Families 20 and 84. Furthermore, a very efficient trans-N-acetylglucosaminidase activity was observed when the double mutant was incubated in the presence of NAG-oxazoline as a donor and N-methyl-O-benzyl-N-(ß-d-glucopyranosyl)-hydroxylamine as an acceptor. More generally, this work demonstrates that it is possible to exchange the specificities and catalytic mechanisms with minimal changes between phylogenetically distant protein structures.


Subject(s)
Acetylglucosaminidase/chemistry , Bacterial Proteins/chemistry , beta-N-Acetylhexosaminidases/chemistry , Acetylglucosamine/chemistry , Acetylglucosaminidase/genetics , Amino Acid Substitution , Bacterial Proteins/genetics , Biocatalysis , Carbohydrate Conformation , Catalytic Domain , Glycosylation , Hydrolysis , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Oxazoles/chemistry , Thermus thermophilus/enzymology , beta-N-Acetylhexosaminidases/genetics
17.
Glycobiology ; 25(4): 420-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25395404

ABSTRACT

A large number of retaining glycosidases catalyze both hydrolysis and transglycosylation reactions. In order to use them as catalysts for oligosaccharide synthesis, the balance between these two competing reactions has to be shifted toward transglycosylation. We previously designed a semi-rational approach to convert the Thermus thermophilus ß-glycosidases into transglycosidases by mutating highly conserved residues located around the -1 subsite. In an attempt to verify that this strategy could be a generic approach to turn glycosidases into transglycosidases, Geobacillus stearothermophilus α-galactosidase (AgaB) was selected in order to obtain α-transgalactosidases. This is of particular interest as, to date, there are no efficient α-galactosynthases, despite the considerable importance of α-galactooligosaccharides. Thus, by site-directed mutagenesis on 14 AgaB residues, 26 single mutants and 22 double mutants were created and screened, of which 11 single mutants and 6 double mutants exhibited improved synthetic activity, producing 4-nitrophenyl α-d-galactopyranosyl-(1,6)-α-d-galactopyranoside in 26-57% yields against only 22% when native AgaB was used. It is interesting to note that the best variant was obtained by mutating a second-shell residue, with no direct interaction with the substrate or a catalytic amino acid. As this approach has proved to be efficient with both α- and ß-glycosidases, it is a promising route to convert retaining glycosidases into transglycosidases.


Subject(s)
Bacterial Proteins/chemistry , Geobacillus stearothermophilus/enzymology , alpha-Galactosidase/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Biocatalysis , Carbohydrate Conformation , Catalytic Domain , Disaccharides/chemical synthesis , Glycosylation , Kinetics , Mutagenesis, Site-Directed , alpha-Galactosidase/genetics
18.
Carbohydr Res ; 401: 64-72, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25464083

ABSTRACT

Random mutagenesis was performed on the α-l-arabinofuranosidase of Thermobacillus xylanilyticus in order to enhance its ability to perform transarabinofuranosylation using natural xylo-oligosaccharides as acceptors. To achieve this goal, a two-step, high-throughput digital imaging protocol involving a colorimetric substrate was used to screen a library of 30,000 mutants. In the first step this screen selected for hydrolytically-impaired mutants, and in the second step the screen identified mutants whose global activity was improved in the presence of a xylo-oligosaccharide mixture. Thereby, 199 mutants displaying lowered hydrolytic activity and modified properties were detected. In the presence of these xylo-oligosaccharides, most of the 199 (i.e., 70%) enzymes were less inhibited and some (18) mutants displayed an unambiguous alleviation of inhibition (<25% loss of activity). More precise monitoring of reactions catalyzed by the most promising mutants revealed a significant improvement of the synthesis yields of transglycosylation products (up to 18% compared to 9% for the parental enzyme) when xylobiose was present in the reaction. Genetic analysis of improved mutants revealed that many of the amino acid substitutions that correlate with the modified phenotype are located in the vicinity of the active site, particularly in subsite -1. Consequently, we hypothesize that these mutations modify the active site topology or the molecular interaction network of the l-arabinofuranoside donor substrate, thus impairing the hydrolysis and concomitantly favoring transglycosylation onto natural acceptors.


Subject(s)
Arabinose/chemistry , Glycoside Hydrolases/metabolism , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Bacillales/enzymology , Catalytic Domain , Chemistry Techniques, Synthetic , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/genetics , Glycosylation , Models, Molecular , Mutagenesis , Mutation , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Structure-Activity Relationship
19.
Langmuir ; 30(46): 13949-55, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25365756

ABSTRACT

The attachment of affinity proteins onto zirconium phosphonate coated glass slides was investigated by fusing a short phosphorylated peptide sequence at one extremity to enable selective bonding to the active surface via the formation of zirconium phosphate coordinate covalent bonds. In a model study, the binding of short peptides containing zero to four phosphorylated serine units and a biotin end-group was assessed by surface plasmon resonance-enhanced ellipsometry (SPREE) as well as in a microarray format using fluorescence detection of AlexaFluor 647-labeled streptavidin. Significant binding to the zirconated surface was only observed in the case of the phosphopeptides, with the best performance, as judged by streptavidin capture, observed for peptides with three or four phosphorylation sites and when spotted at pH 3. When fusing similar phosphopeptide tags to the affinity protein, the presence of four phosphate groups in the tag allows efficient immobilization of the proteins and efficient capture of their target.


Subject(s)
Immobilized Proteins/chemistry , Peptides/chemistry , Protein Array Analysis/methods , Streptavidin/chemistry , Zirconium/chemistry , Hydrogen-Ion Concentration
20.
Protein Eng Des Sel ; 27(1): 13-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24287187

ABSTRACT

A large number of retaining glycosidases catalyze both hydrolysis and transglycosylation reactions, but little is known about what determines the balance between these two activities (transglycosylation/hydrolysis ratio). We previously obtained by directed evolution the mutants F401S and N282T of Thermus thermophilus ß-glycosidase (Ttß-gly, glycoside hydrolase family 1 (GH1)), which display a higher transglycosylation/hydrolysis ratio than the wild-type enzyme. In order to find the cause of these activity modifications, and thereby set up a generic method for easily obtaining transglycosidases from glycosidases, we determined their X-ray structure. No major structural changes could be observed which could help to rationalize the mutagenesis of glycosidases into transglycosidases. However, as these mutations are highly conserved in GH1 ß-glycosidases and are located around the -1 site, we pursued the isolation of new transglycosidases by targeting highly conserved amino acids located around the active site. Thus, by single-point mutagenesis on Ttß-gly, we created four new mutants that exhibit improved synthetic activity, producing disaccharides in yields of 68-90% against only 36% when native Ttß-gly was used. As all of the chosen positions were well conserved among GH1 enzymes, this approach is most probably a general route to convert GH1 glycosidases into transglycosidases.


Subject(s)
Mutagenesis, Site-Directed/methods , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Computational Biology , Glycosylation , Kinetics , Mutation/genetics , Mutation/physiology , Thermus thermophilus/enzymology , Thermus thermophilus/genetics , beta-Glucosidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL