Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 133(4): 046502, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39121411

ABSTRACT

Understanding spin and lattice excitations in a metallic magnetic ordered system forms the basis to unveil the magnetic and lattice exchange couplings and their interactions with itinerant electrons. Kagome lattice antiferromagnet FeGe is interesting because it displays a rare charge density wave (CDW) deep inside the antiferromagnetic ordered phase that interacts with the magnetic order. We use neutron scattering to study the evolution of spin and lattice excitations across the CDW transition T_{CDW} in FeGe. While spin excitations below ∼100 meV can be well described by spin waves of a spin-1 Heisenberg Hamiltonian, spin excitations at higher energies are centered around the Brillouin zone boundary and extend up to ∼180 meV consistent with quasiparticle excitations across spin-polarized electron-hole Fermi surfaces. Furthermore, c-axis spin wave dispersion and Fe-Ge optical phonon modes show a clear hardening below T_{CDW} due to spin-charge-lattice coupling but with no evidence of a phonon Kohn anomaly. By comparing our experimental results with density functional theory calculations in absolute units, we conclude that FeGe is a Hund's metal in the intermediate correlated regime where magnetism has contributions from both itinerant and localized electrons arising from spin polarized electronic bands near the Fermi level.

2.
Nat Commun ; 15(1): 2739, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548765

ABSTRACT

Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5-δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.

3.
Nat Commun ; 15(1): 1918, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429271

ABSTRACT

The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at TN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment below TCDW ≈ 110 K, and finally forms a c-axis double cone AFM structure around TCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well above TCanting and TCDW that merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging below TN where AFM order is commensurate, start to deviate from the Bose factor around TCDW, and peaks at TCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order.

SELECTION OF CITATIONS
SEARCH DETAIL