Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 133(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37655658

ABSTRACT

Red blood cells (RBCs) mediate cardioprotection via nitric oxide-like bioactivity, but the signaling and the identity of any mediator released by the RBCs remains unknown. We investigated whether RBCs exposed to hypoxia release a cardioprotective mediator and explored the nature of this mediator. Perfusion of isolated hearts subjected to ischemia-reperfusion with extracellular supernatant from mouse RBCs exposed to hypoxia resulted in improved postischemic cardiac function and reduced infarct size. Hypoxia increased extracellular export of cyclic guanosine monophosphate (cGMP) from mouse RBCs, and exogenous cGMP mimicked the cardioprotection induced by the supernatant. The protection induced by hypoxic RBCs was dependent on RBC-soluble guanylate cyclase and cGMP transport and was sensitive to phosphodiesterase 5 and activated cardiomyocyte protein kinase G. Oral administration of nitrate to mice to increase nitric oxide bioactivity further enhanced the cardioprotective effect of hypoxic RBCs. In a placebo-controlled clinical trial, a clear cardioprotective, soluble guanylate cyclase-dependent effect was induced by RBCs collected from patients randomized to 5 weeks nitrate-rich diet. It is concluded that RBCs generate and export cGMP as a response to hypoxia, mediating cardioprotection via a paracrine effect. This effect can be further augmented by a simple dietary intervention, suggesting preventive and therapeutic opportunities in ischemic heart disease.


Subject(s)
Cardiotonic Agents , Cyclic GMP , Erythrocytes , Soluble Guanylyl Cyclase , Animals , Mice , Hypoxia , Myocytes, Cardiac , Nitrates , Nitric Oxide , Rats , Humans
2.
JACC Basic Transl Sci ; 8(8): 907-918, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37719424

ABSTRACT

Reduced nitric oxide (NO) bioactivity in red blood cells (RBCs) is critical for augmented myocardial ischemia-reperfusion injury in type 2 diabetes. This study identified the nature of "NO bioactivity" by stimulating the intracellular NO receptor soluble guanylyl cyclase (sGC) in RBCs. sGC stimulation in RBCs from patients with type 2 diabetes increased export of cyclic guanosine monophosphate from RBCs and activated cardiac protein kinase G, thereby attenuating ischemia-reperfusion injury. These results provide novel insight into RBC signaling by identifying cyclic guanosine monophosphate from RBC as a mediator of protection against cardiac ischemia-reperfusion injury induced by sGC stimulation in RBCs.

3.
J Intern Med ; 293(2): 228-245, 2023 02.
Article in English | MEDLINE | ID: mdl-36324273

ABSTRACT

BACKGROUND: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS). OBJECTIVE: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction. METHODS AND RESULTS: FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups. CONCLUSION: FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperlipoproteinemia Type II , Animals , Rats , Cholesterol, LDL , Reactive Oxygen Species/metabolism , Hyperlipoproteinemia Type II/complications , Erythrocytes/metabolism
4.
J Physiol ; 601(22): 4989-5009, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36094621

ABSTRACT

Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Exosomes , Extracellular Vesicles , Humans , Cardiovascular Diseases/genetics , Endothelial Cells , Extracellular Vesicles/genetics , Exosomes/genetics , Cell Communication , RNA, Untranslated/genetics
5.
Basic Res Cardiol ; 117(1): 46, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112326

ABSTRACT

Red blood cells (RBCs) are suggested to play a role in cardiovascular regulation by exporting nitric oxide (NO) bioactivity and ATP under hypoxia. It remains unknown whether such beneficial effects of RBCs are protective in patients with acute myocardial infarction. We investigated whether RBCs from patients with ST-elevation myocardial infarction (STEMI) protect against myocardial ischemia-reperfusion injury and whether such effect involves NO and purinergic signaling in the RBCs. RBCs from patients with STEMI undergoing primary coronary intervention and healthy controls were administered to isolated rat hearts subjected to global ischemia and reperfusion. Compared to RBCs from healthy controls, RBCs from STEMI patients reduced myocardial infarct size (30 ± 12% RBC healthy vs. 11 ± 5% RBC STEMI patients, P < 0.001), improved recovery of left-ventricular developed pressure and dP/dt and reduced left-ventricular end-diastolic pressure in hearts subjected to ischemia-reperfusion. Inhibition of RBC NO synthase with L-NAME or soluble guanylyl cyclase (sGC) with ODQ, and inhibition of cardiac protein kinase G (PKG) abolished the cardioprotective effect. Furthermore, the non-selective purinergic P2 receptor antagonist PPADS but not the P1 receptor antagonist 8PT attenuated the cardioprotection induced by RBCs from STEMI patients. The P2Y13 receptor was expressed in RBCs and the cardioprotection was abolished by the P2Y13 receptor antagonist MRS2211. By contrast, perfusion with PPADS, L-NAME, or ODQ prior to RBCs administration failed to block the cardioprotection induced by RBCs from STEMI patients. Administration of RBCs from healthy subjects following pre-incubation with an ATP analog reduced infarct size from 20 ± 6 to 7 ± 2% (P < 0.001), and this effect was abolished by ODQ and MRS2211. This study demonstrates a novel function of RBCs in STEMI patients providing protection against myocardial ischemia-reperfusion injury through the P2Y13 receptor and the NO-sGC-PKG pathway.


Subject(s)
Erythrocytes , Myocardial Infarction , Myocardial Reperfusion Injury , ST Elevation Myocardial Infarction , Adenosine Triphosphate , Animals , Cyclic GMP-Dependent Protein Kinases , Erythrocytes/metabolism , Humans , Myocardial Infarction/prevention & control , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/therapy , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase , Purinergic P2 Receptor Antagonists , Rats , Receptors, Purinergic P2/metabolism , ST Elevation Myocardial Infarction/metabolism , Soluble Guanylyl Cyclase
6.
JACC Basic Transl Sci ; 7(3): 193-204, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35194565

ABSTRACT

Current knowledge regarding mechanisms underlying cardiovascular complications in patients with COVID-19 is limited and urgently needed. We shed light on a previously unrecognized mechanism and unravel a key role of red blood cells, driving vascular dysfunction in patients with COVID-19 infection. We establish the presence of profound and persistent endothelial dysfunction in vivo in patients with COVID-19. Mechanistically, we show that targeting reactive oxygen species or arginase 1 improves vascular dysfunction mediated by red blood cells. These translational observations hold promise that restoring the redox balance in red blood cells might alleviate the clinical complications of COVID-19-associated vascular dysfunction.

7.
J Intern Med ; 290(5): 1061-1070, 2021 11.
Article in English | MEDLINE | ID: mdl-34237174

ABSTRACT

BACKGROUND: The mechanisms underlying rupture of a coronary atherosclerotic plaque and development of myocardial ischemia-reperfusion injury in ST-elevation myocardial infarction (STEMI) remain unresolved. Increased arginase 1 activity leads to reduced nitric oxide (NO) production and increased formation of reactive oxygen species due to uncoupling of the NO-producing enzyme endothelial NO synthase (eNOS). This contributes to endothelial dysfunction, plaque instability and increased susceptibility to ischemia-reperfusion injury in acute myocardial infarction. OBJECTIVE: The purpose of this study was to test the hypothesis that arginase gene and protein expression are upregulated in patients with STEMI. METHODS: Two cohorts of patients with STEMI were included. In the first cohort (n = 51), expression of arginase and NO-synthases as well as arginase 1 protein levels were determined and compared to a healthy control group (n = 45). In a second cohort (n = 68), plasma arginase 1 levels and infarct size were determined using cardiac magnetic resonance imaging. RESULTS: Expression of the gene encoding arginase 1 was significantly elevated at admission and 24-48 h after STEMI but not 3 months post STEMI, in comparison with the control group. Expression of the genes encoding arginase 2 and endothelial NO synthase (NOS3) were unaltered. Arginase 1 protein levels were elevated at admission, 24 h post STEMI and remained elevated for up to 6 months. No significant correlation between plasma arginase 1 protein levels and infarct size was observed. CONCLUSION: The markedly increased gene and protein expression of arginase 1 already at admission indicates a role of arginase 1 in the development of STEMI.


Subject(s)
Arginase , Myocardial Reperfusion Injury , ST Elevation Myocardial Infarction , Arginase/blood , Arginase/genetics , Humans , Myocardial Reperfusion Injury/genetics , Nitric Oxide Synthase Type III , ST Elevation Myocardial Infarction/genetics , Treatment Outcome
8.
Catheter Cardiovasc Interv ; 97(3): 386-392, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32034857

ABSTRACT

BACKGROUND: Conflicting evidence exists concerning the cardioprotective efficacy of remote ischemic conditioning as an adjunct to primary percutaneous intervention (PCI) in ST-elevation myocardial infarction (STEMI) and data on long-term outcomes are scarce. We evaluated final infarct size by cardiac magnetic resonance (CMR) performed 6 months after anterior STEMI treated with remote ischemic conditioning and clinical outcomes up to 3 years after the event. METHODS: One hundred and fifteen patients with anterior STEMI were randomized to remote ischemic per-postconditioning (RIperpostC) or sham procedure as adjunct to primary PCI. The primary outcome was myocardial salvage index (MSI) on CMR 6 months after the event. Secondary outcomes were absolute infarct size, left ventricular function, cardiac mortality, major adverse cardiac and cerebrovascular events (MACCE-composite of all-cause mortality, myocardial infarction, readmission for heart failure, ischemic stroke, and target lesion revascularization) and all the individual components of MACCE. RESULTS: There was no difference in MSI or left ventricular function between the RIperpostC and the control group after 6 months. Nor did clinical outcomes at 6 months or 3 years differ between the groups. CONCLUSIONS: RIperpostC as an adjunct to PCI in anterior STEMI did not result in better MSI or left ventricular function 6 months after the event. Furthermore, clinical outcomes at 6 months and 3 years were not altered.


Subject(s)
Ischemic Postconditioning , Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , Percutaneous Coronary Intervention/adverse effects , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Treatment Outcome
9.
Cells ; 9(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708826

ABSTRACT

We recently showed that red blood cells (RBCs) from patients with type 2 diabetes mellitus (T2DM-RBCs) induce endothelial dysfunction through a mechanism involving arginase I and reactive oxygen species. Peroxynitrite is known to activate arginase in endothelial cells. Whether peroxynitrite regulates arginase activity in RBCs, and whether it is involved in the cross-talk between RBCs and the vasculature in T2DM, is unclear and elusive. The present study was designed to test the hypothesis that endothelial dysfunction induced by T2DM-RBCs is driven by peroxynitrite and upregulation of arginase. RBCs were isolated from patients with T2DM and healthy age matched controls. RBCs were co-incubated with aortae isolated from wild type rats for 18 h in the absence and presence of peroxynitrite scavenger FeTTPS. Evaluation of endothelial function in organ chambers by cumulative addition of acetylcholine as well as measurement of RBC and vessel arginase activity was performed. In another set of experiments, RBCs isolated from healthy subjects (Healthy RBCs) were incubated with the peroxynitrite donor SIN-1 with subsequent evaluation of endothelial function and arginase activity. T2DM-RBCs, but not Healthy RBCs, induced impairment in endothelial function, which was fully reversed by scavenging of RBC but not vascular peroxynitrite with FeTPPS. Arginase activity was up-regulated by the peroxynitrite donor SIN-1 in Healthy RBCs, an effect that was inhibited by FeTTPS. Healthy RBCs co-incubated with aortae in the presence of SIN-1 caused impairment of endothelial function, which was inhibited by FeTTPS or the arginase inhibitor ABH. T2DM-RBCs induced up-regulation of vascular arginase, an effect that was fully inhibited by FeTTPS. Collectively, our data indicate that RBCs impair endothelial function in T2DM via an effect that is driven by a peroxynitrite-mediated increase in arginase activity. This mechanism may be targeted in patients with T2DM for improvement in endothelial function.


Subject(s)
Arginase/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/physiopathology , Erythrocytes/metabolism , Peroxynitrous Acid/metabolism , Animals , Aorta/drug effects , Aorta/enzymology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Erythrocytes/drug effects , Female , Humans , Male , Middle Aged , Models, Biological , Molsidomine/analogs & derivatives , Molsidomine/pharmacology , Rats, Sprague-Dawley , Rats, Wistar
10.
Front Pharmacol ; 11: 603226, 2020.
Article in English | MEDLINE | ID: mdl-33390992

ABSTRACT

It is well established that altered purinergic signaling contributes to vascular dysfunction in type 2 diabetes (T2D). Red blood cells (RBCs) serve as an important pool for circulating ATP and the release of ATP from RBCs in response to physiological stimuli is impaired in T2D. We recently demonstrated that RBCs from patients with T2D (T2D RBC) serve as key mediators of endothelial dysfunction. However, it remains unknown whether altered vascular purinergic signaling is involved in the endothelial dysfunction induced by dysfunctional RBCs in T2D. Here, we evaluated acetylcholine-induced endothelium-dependent relaxation (EDR) of isolated rat aortas after 18 h ex vivo co-incubation with human RBCs, and aortas of healthy recipient rats 4 h after in vivo transfusion with RBCs from T2D Goto-Kakizaki (GK) rats. Purinergic receptor (PR) antagonists were applied in isolated aortas to study the involvement of PRs. EDR was impaired in aortas incubated with T2D RBC but not with RBCs from healthy subjects ex vivo, and in aortas of healthy rats after transfusion with GK RBCs in vivo. The impairment in EDR by T2D RBC was attenuated by non-selective P1R and P2R antagonism, and specific A1R, P2X7R but not P2Y6R antagonism. Transfusion with GK RBCs in vivo impaired EDR in aortas of recipient rats, an effect that was attenuated by A1R, P2X7R but not P2Y6R antagonism. In conclusion, RBCs induce endothelial dysfunction in T2D via vascular A1R and P2X7R but not P2Y6R. Targeting vascular purinergic singling may serve as a potential therapy to prevent endothelial dysfunction induced by RBCs in T2D.

SELECTION OF CITATIONS
SEARCH DETAIL
...