Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Technol ; 43(15): 2278-2289, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33390095

ABSTRACT

This work proposes a novel technology for environmental remediation based on mesoporous silica spheres, which were successfully synthesized by the solvothermal method using the cetyltrimethylammonium bromide as a structuring agent. The adsorbent was designed to remove cationic dyes at strong acidic conditions. The surface was modified by a careful thermal treatment aiming at the condensation of silanol to siloxane groups. The adsorbent was characterized by XRD, SEM, FTIR, N2 adsorption/desorption and the equilibrium technique to determine the pHpzc. The kinetic of the adsorption followed a pseudo-second-order model and the process was ruled by physical forces. The isotherms were fitted to Freundlich and Temkin models, indicating that the physisorption occurred with multilayer formation, with the interaction adsorbate-adsorbate being relevant to the whole process. The adsorption capacity was approximately 60 mg g-1 and the adsorbents performance in the fast-contact system showed removal of 65%wt. of a 93 mg L-1 methylene blue (MB) solution in a single application.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Silicon Dioxide , Water
2.
J Photochem Photobiol B ; 212: 112039, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33002779

ABSTRACT

In this study we report a novel theranostic lipid-polymer liposome, obtained from DPPC and the triblock copolymer F127 covalently modified with 5(6)-carboxyfluorescein (CF) for photodynamic applications. Due to the presence of F127, small unilamellar vesicle (SUV) liposomes were synthesized by a simple and fast thin-film hydration method without the need for an extrusion process. The vesicles have around 100 nm, low polydispersity and superb solution stability. The clinically used photosensitizer verteporfin (VP) was entrapped into the vesicles, mostly in monomeric form, with 90% loading efficiency. Stern-Volmer and fluorescence lifetime assays showed heterogeneous distribution of the VP and CF into the vesicles, ensuring the integrity of their individual photophysical properties. The theranostic properties were entirely photoactivatable and can be trigged by a unique wavelength (470 nm). The feasibility of the system was tested against the Glioblastoma multiforme cell line T98G. Cellular uptake by time-resolved fluorescence microscopy showed monomerized VP (monoexponential decay, 6.0 ns) at nucleus level, while CF was detected at the membrane by fluorescence microscopy. The strategy's success was supported by the reduction of 98% in the viability of T98G cells by the photoactivated lipid-polymer liposome with [VP] = 1.0 µmol L-1. Therefore, the novel theranostic liposome is a potential system for use in cancer and ocular disease therapies.


Subject(s)
Photochemotherapy/methods , Verteporfin/administration & dosage , Verteporfin/pharmacology , Cell Line, Tumor , Drug Stability , Humans , Kinetics , Liposomes , Verteporfin/therapeutic use
3.
Molecules ; 25(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784931

ABSTRACT

ß-Cyclodextrin (ß-CD) is an oligosaccharide composed of seven units of D-(+)-glucopyranose joined by α-1,4 bonds, which is obtained from starch. Its singular trunk conical shape organization, with a well-defined cavity, provides an adequate environment for several types of molecules to be included. Complexation changes the properties of the guest molecules and can increase their stability and bioavailability, protecting against degradation, and reducing their volatility. Thanks to its versatility, biocompatibility, and biodegradability, ß-CD is widespread in many research and industrial applications. In this review, we summarize the role of ß-CD and its derivatives in the textile industry. First, we present some general physicochemical characteristics, followed by its application in the areas of dyeing, finishing, and wastewater treatment. The review covers the role of ß-CD as an auxiliary agent in dyeing, and as a matrix for dye adsorption until chemical modifications are applied as a finishing agent. Finally, new perspectives about its use in textiles, such as in smart materials for microbial control, are presented.


Subject(s)
Biodegradation, Environmental , Coloring Agents/chemistry , Textile Industry , Textiles/analysis , Water Pollutants, Chemical/chemistry , beta-Cyclodextrins/chemistry , Humans
4.
Photochem Photobiol ; 91(3): 518-25, 2015.
Article in English | MEDLINE | ID: mdl-25644689

ABSTRACT

Aluminum Chloride Phthalocyanine (AlPcCl) can be used as a photosensitizer (PS) for Photodynamic Inactivation of Microorganisms (PDI). The AlPcCl showed favorable characteristics for PDI due to high quantum yield of singlet oxygen (ΦΔ ) and photostability. Physicochemical properties and photodynamic inactivation of AlPcCl incorporated in polymeric micelles of tri-block copolymer (P-123 and F-127) against microorganisms Staphylococcus aureus, Escherichia coli and Candida albicans were investigated in this work. Previously, it was observed that the AlPcCl undergoes self-aggregation in F-127, while in P-123 the PS is in a monomeric form suitable for PDI. Due to the self-aggregation of AlPcCl in F-127, this formulation did not show any effect on these microorganisms. On the other hand, AlPcCl formulated in P-123 was effective against S. aureus and C. albicans and the death of microorganisms was dependent on the PS concentration and illumination time. Additionally, it was found that the values of PS concentration and illumination time to eradicate 90% of the initial population of microorganisms (IC90 and D90 , respectively) were small for the AlPcCl in P-123, showing the effectiveness of this formulation for PDI.


Subject(s)
Candida albicans/drug effects , Indoles/chemistry , Micelles , Microbial Viability/drug effects , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Poloxamer/analogs & derivatives , Poloxamer/chemistry , Staphylococcus aureus/drug effects , Aluminum Chloride , Light , Photosensitizing Agents/radiation effects , Poloxamer/pharmacology , Staphylococcus aureus/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL