Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Toxins (Basel) ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: mdl-35324710

ABSTRACT

Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations. Identifying and quantifying cyanotoxins in surface waters, fish tissue, organs, and other matrices are crucial for risk assessment and for ensuring quality of food and water for consumption and recreational uses. This paper also summarizes currently available tissue extraction, preparation, and detection methods mentioned in previous studies that have quantified toxins in complex matrices. The structural diversity and complexity of many cyanobacterial and algal metabolites further impede accurate quantitation and structural confirmation for various cyanotoxins. Liquid chromatography-triple quadrupole mass spectrometer (LC-MS/MS) to enhance the sensitivity and selectivity of toxin analysis has become an essential tool for cyanotoxin detection and can potentially be used for the concurrent analysis of multiple toxins.


Subject(s)
Cyanobacteria Toxins , Water , Animals , Chromatography, Liquid , Ecosystem , Fishes , Harmful Algal Bloom , Microcystins/analysis , Tandem Mass Spectrometry
2.
Ecotoxicology ; 30(3): 411-420, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33675450

ABSTRACT

Calanoid copepods are integral to aquatic food webs and may drive the bioaccumulation of toxins and heavy metals, spread of infectious diseases, and occurrence of toxic cyanobacterial harmful algal blooms (HABs) in freshwater aquatic systems. However, interrelationships between copepod and cyanobacterial population dynamics and ecophysiology remain unclear. Insights into these relationships are important to aquatic resource management, as they may help guide mitigation efforts. We developed a calanoid copepod qPCR assay to investigate how copepod abundance and physiological status relate to the abundance of cyanobacteria and the concentration of total microcystin in a HAB-prone freshwater multi-use eutrophic lake. Through in silico and in vitro validation of primers and analyses of time series, we demonstrate that our assay can be used as a reliable tool for environmental monitoring. Importantly, copepod RNA:DNA ratios on and shortly after the day when microcystin concentration was at its highest within the lake were not significantly lower (or higher) than before or after this period, suggesting that copepods may have been tolerant of microcystin levels observed and capable of perpetuating bloom events by consuming competitors of toxic cyanobacteria.


Subject(s)
Copepoda , Cyanobacteria , Animals , Copepoda/genetics , Cyanobacteria/genetics , DNA , Environmental Monitoring , Harmful Algal Bloom , Lakes , Microcystins , RNA, Ribosomal
SELECTION OF CITATIONS
SEARCH DETAIL