Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Bone Miner Res ; 37(7): 1335-1351, 2022 07.
Article in English | MEDLINE | ID: mdl-35560108

ABSTRACT

Osteoarthritis (OA) is a common degenerative disease of the joint, with a complex multifactorial not yet fully understood etiology. Over the past years, the Wnt signaling pathway has been implicated in osteoarthritis. In a recent genomewide association study (GWAS), the chromosomal location on chromosome 1, linked to the Wnt3a-Wnt9a gene locus, was identified as the most significant locus associated with a thumb osteoarthritis endophenotype. Previously, it was shown that WNT9a is involved in maintaining synovial cell identity in the elbow joint during embryogenesis. Here, we report that the conditional loss of Wnt9a in the Prx1-Cre expressing limb mesenchyme or Prg4-CreER expressing cells predispositions the mice to develop spontaneous OA-like changes with age. In addition, the trabecular bone volume is altered in these mice. Similarly, mice with a conditional loss of Wnt4 in the limb mesenchyme are also more prone to develop spontaneously OA-like joint alterations with age. These mice display additional alterations in their cortical bone. The combined loss of Wnt9a and Wnt4 increased the likelihood of the mice developing osteoarthritis-like changes and enhanced disease severity in the affected mice. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Osteoarthritis , Wnt Proteins , Wnt4 Protein , Animals , Bone and Bones/metabolism , Cortical Bone/metabolism , Mesoderm/metabolism , Mice , Osteoarthritis/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , Wnt4 Protein/genetics
2.
Lett Math Phys ; 112(1): 9, 2022.
Article in English | MEDLINE | ID: mdl-35125630

ABSTRACT

Based on a result by Yarotsky (J Stat Phys 118, 2005), we prove that localized but otherwise arbitrary perturbations of weakly interacting quantum spin systems with uniformly gapped on-site terms change the ground state of such a system only locally, even if they close the spectral gap. We call this a strong version of the local perturbations perturb locally (LPPL) principle which is known to hold for much more general gapped systems, but only for perturbations that do not close the spectral gap of the Hamiltonian. We also extend this strong LPPL-principle to Hamiltonians that have the appropriate structure of gapped on-site terms and weak interactions only locally in some region of space. While our results are technically corollaries to a theorem of Yarotsky, we expect that the paradigm of systems with a locally gapped ground state that is completely insensitive to the form of the Hamiltonian elsewhere extends to other situations and has important physical consequences.

3.
Cell Death Dis ; 12(5): 494, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33990546

ABSTRACT

Agonists and antagonists of the canonical Wnt signaling pathway are modulators of pathological aspects of rheumatoid arthritis (RA). Their activity is primarily modifying bone loss and bone formation, as shown in animal models of RA. More recently, modulation of Wnt signaling by the antagonist Sclerostin has also been shown to influence soft-tissue-associated inflammatory aspects of the disease pointing towards a role of Wnt signaling in soft-tissue inflammation as well. Yet, nothing is known experimentally about the role of Wnt ligands in RA. Here we provide evidence that altering Wnt signaling at the level of a ligand affects all aspects of the rheumatoid arthritic disease. WNT9a levels are increased in the pannus tissue of RA patients, and stimulation of synovial fibroblasts (SFB) with tumor necrosis factor (TNF) leads to increased transcription of Wnt9a. Loss of Wnt9a in a chronic TNF-dependent RA mouse model results in an aggravation of disease progression with enhanced pannus formation and joint destruction. Yet, loss of its activity in the acute K/BxN serum-transfer induced arthritis (STIA) mouse model, which is independent of TNF signaling, has no effect on disease severity or progression. Thus, suggesting a specific role for WNT9a in TNF-triggered RA. In synovial fibroblasts, WNT9a can activate the canonical Wnt/ß-catenin pathway, but it can also activate P38- and downregulate NFκB signaling. Based on in vitro data, we propose that loss of Wnt9a creates a slight proinflammatory and procatabolic environment that boosts the TNF-mediated inflammatory response.


Subject(s)
Arthritis, Rheumatoid/metabolism , Wnt Proteins/metabolism , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Transgenic
4.
Aging (Albany NY) ; 12(18): 18603-18621, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32979261

ABSTRACT

Scoliosis is an abnormal bending of the body axis. Truncated vertebrae or a debilitated ability to control the musculature in the back can cause this condition, but in most cases the causative reason for scoliosis is unknown (idiopathic). Using mutants for somite clock genes with mild defects in the vertebral column, we here show that early defects in somitogenesis are not overcome during development and have long lasting and profound consequences for muscle fiber organization, structure and whole muscle volume. These mutants present only mild alterations in the vertebral column, and muscle shortcomings are uncoupled from skeletal defects. None of the mutants presents an overt musculoskeletal phenotype at larval or early adult stages, presumably due to compensatory growth mechanisms. Scoliosis becomes only apparent during aging. We conclude that adult degenerative scoliosis is due to disturbed crosstalk between vertebrae and muscles during early development, resulting in subsequent adult muscle weakness and bending of the body axis.

5.
J Chem Phys ; 151(1): 014113, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31272174

ABSTRACT

The quantum mechanical motion of the atomic nuclei is considered over a single- or a multidimensional subspace of electronic states which is separated by a gap from the rest of the electronic spectrum over the relevant range of nuclear configurations. The electron-nucleus Hamiltonian is block-diagonalized up to O(εn+1) through a unitary transformation of the electronic subspace, and the corresponding nth-order effective Hamiltonian is derived for the quantum nuclear motion. Explicit but general formulas are given for the second- and the third-order corrections. As a special case, the second-order Hamiltonian corresponding to an isolated electronic state is recovered which contains the coordinate-dependent mass-correction terms in the nuclear kinetic energy operator. For a multidimensional, explicitly coupled electronic band, the second-order Hamiltonian contains the usual Born-Oppenheimer terms and nonadiabatic corrections, but generalized mass-correction terms appear as well. These, earlier neglected terms, perturbatively account for the outlying (discrete and continuous) electronic states not included in the explicitly coupled electronic subspace.

6.
Curr Top Dev Biol ; 133: 235-279, 2019.
Article in English | MEDLINE | ID: mdl-30902254

ABSTRACT

As the vertebrate skeleton develops it progresses from a solely cartilaginous scaffold to a mineralized bony skeleton. The cells that build up the skeleton, the chondrocytes and osteoblasts, are primarily of mesodermal origin. Yet, some facial bones, as well as the endocranium, are derived from neural crest cells. The differentiation of the mesenchymal cells to skeletal precursors as well as their subsequent differentiation and maturation along the two lineages, chondrogenic and osteogenic, is controlled by various different signaling pathways, among them Wnt-signaling. WNTs comprise a family of 19 secreted cysteine-rich glycoproteins and can signal through a variety of different intracellular pathways. Genetic loss- and gain-of-function experiments of Wnt-signaling pathway genes have helped to uncover their multiple roles in skeletogenesis, which will be discussed in this article primarily focusing on endochondral bone formation.


Subject(s)
Osteogenesis , Wnt Signaling Pathway , Animals , Bone Diseases/pathology , Humans , Joints/embryology , Models, Biological , Osteoblasts/metabolism
7.
Sci Transl Med ; 10(466)2018 11 07.
Article in English | MEDLINE | ID: mdl-30404864

ABSTRACT

WNT1 mutations in humans are associated with a new form of osteogenesis imperfecta and with early-onset osteoporosis, suggesting a key role of WNT1 in bone mass regulation. However, the general mode of action and the therapeutic potential of Wnt1 in clinically relevant situations such as aging remain to be established. Here, we report the high prevalence of heterozygous WNT1 mutations in patients with early-onset osteoporosis. We show that inactivation of Wnt1 in osteoblasts causes severe osteoporosis and spontaneous bone fractures in mice. In contrast, conditional Wnt1 expression in osteoblasts promoted rapid bone mass increase in developing young, adult, and aged mice by rapidly increasing osteoblast numbers and function. Contrary to current mechanistic models, loss of Lrp5, the co-receptor thought to transmit extracellular WNT signals during bone mass regulation, did not reduce the bone-anabolic effect of Wnt1, providing direct evidence that Wnt1 function does not require the LRP5 co-receptor. The identification of Wnt1 as a regulator of bone formation and remodeling provides the basis for development of Wnt1-targeting drugs for the treatment of osteoporosis.


Subject(s)
Anabolic Agents/metabolism , Bone and Bones/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Wnt1 Protein/metabolism , Aging/pathology , Animals , Bone Remodeling , Bone and Bones/physiopathology , Cell Differentiation , Cortical Bone/pathology , Fractures, Bone/epidemiology , Fractures, Bone/physiopathology , Humans , Incidence , Ligands , Mice, Transgenic , Mutation/genetics , Organ Size , Osteoblasts/metabolism , Osteoblasts/pathology , Osteogenesis , Transgenes , Wnt1 Protein/genetics
8.
Development ; 143(20): 3826-3838, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27621061

ABSTRACT

Trabecular bone formation is the last step in endochondral ossification. This remodeling process of cartilage into bone involves blood vessel invasion and removal of hypertrophic chondrocytes (HTCs) by chondroclasts and osteoclasts. Periosteal- and chondrocyte-derived osteoprogenitors utilize the leftover mineralized HTC matrix as a scaffold for primary spongiosa formation. Here, we show genetically that ß-catenin (encoded by Ctnnb1), a key component of the canonical Wnt pathway, orchestrates this remodeling process at multiple levels. Conditional inactivation or stabilization of ß-catenin in HTCs by a Col10a1-Cre line locally modulated osteoclastogenesis by altering the Rankl:Opg ratio in HTCs. Lack of ß-catenin resulted in a severe decrease of trabecular bone in the embryonic long bones. Gain of ß-catenin activity interfered with removal of late HTCs and bone marrow formation, leading to a continuous mineralized hypertrophic core in the embryo and resulting in an osteopetrotic-like phenotype in adult mice. Furthermore, ß-catenin activity in late HTCs is required for chondrocyte-derived osteoblastogenesis at the chondro-osseous junction. The latter contributes to the severe trabecular bone phenotype in mutants lacking ß-catenin activity in HTCs.


Subject(s)
Chondrocytes/cytology , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/physiology , beta Catenin/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Chondrocytes/metabolism , Fluorescent Antibody Technique , Immunohistochemistry , In Situ Hybridization, Fluorescence , Mice , Osteogenesis/genetics , Real-Time Polymerase Chain Reaction , X-Ray Microtomography , beta Catenin/genetics
9.
Cell Metab ; 21(3): 493-501, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25738463

ABSTRACT

Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na(+) storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na(+) content in the skin by a high-salt diet boosted activation of macrophages in a Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection.


Subject(s)
Anti-Infective Agents/pharmacology , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/metabolism , Macrophages/metabolism , Skin/metabolism , Sodium/metabolism , Animals , Enzyme Activation/physiology , Humans , Leishmania major/drug effects , Macrophages/drug effects , Mice , NFATC Transcription Factors/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Skin/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
10.
J Immunol ; 193(1): 223-33, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24899506

ABSTRACT

The bone marrow provides niches for early B cell differentiation and long-lived plasma cells. Therefore, it has been hypothesized that perturbing bone homeostasis might impact B cell function and Ab production. This hypothesis is highly relevant for patients receiving long-term treatment with antiresorptive drugs. We therefore analyzed the humoral immune response of mice chronically treated with ibandronate, a commonly used bisphosphonate. We confirmed the increased bone mass caused by inhibition of osteoclast activity and also the strongly reduced bone formation because of decreased osteoblast numbers in response to ibandronate. Thus, bisphosphonate drastically inhibited bone remodeling. When ibandronate was injected into mice after a primary immunization to mimic common antiosteoporotic treatments, the generation of the various B cell populations, the response to booster immunization, and the generation of plasma cells were surprisingly normal. Mice also responded normally to immunization when ibandronate was applied to naive mice. However, there, ibandronate shunted the homing of bone marrow plasma cells. Interestingly, ibandronate reduced the numbers of megakaryocytes, a known component of the bone marrow plasma cell niche. In line with normal Ab responses, increased plasma cell populations associated with increased megakaryocyte numbers were then observed in the spleens of the ibandronate-treated mice. Thus, although inhibition of bone remodeling disturbed the bone marrow plasma cell niche, a compensatory niche may have been created by relocating the megakaryocytes into the spleen, thereby allowing normal B cell responses. Therefore, megakaryocytes may act as a key regulator of plasma cell niche plasticity.


Subject(s)
Antibody Formation/drug effects , Bone Density Conservation Agents/adverse effects , Bone Marrow Cells/immunology , Bone Remodeling/drug effects , Diphosphonates/adverse effects , Plasma Cells/immunology , Spleen/immunology , Animals , Antibody Formation/immunology , Bone Density Conservation Agents/pharmacology , Diphosphonates/pharmacology , Ibandronic Acid , Megakaryocytes/immunology , Mice
11.
PLoS One ; 9(1): e84818, 2014.
Article in English | MEDLINE | ID: mdl-24400116

ABSTRACT

Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogenesis. p38 function is regulated by two upstream MAPK kinases, namely MKK3 and MKK6. The goal of this study was to assess the effect of MKK3- or MKK6-deficiency on osteoclastogenesis in vitro and on bone loss in ovariectomy-induced osteoporosis in mice. We demonstrated that MKK3 but not MKK6, regulates osteoclast differentiation from bone marrow cells in vitro. Expression of NFATc1, a master transcription factor in osteoclastogenesis, is decreased in cells lacking MKK3 but not MKK6. Expression of osteoclast-specific genes Cathepsin K, osteoclast-associated receptor and MMP9, was inhibited in MKK3-/- cells. The effect of MKK-deficiency on ovariectomy-induced bone loss was then evaluated in female WT, MKK3-/- and MKK6-/- mice by micro-CT analysis. Bone loss was partially inhibited in MKK3-/- as well as MKK6-/- mice, despite normal osteoclastogenesis in MKK6-/- cells. This correlated with the lower osteoclast numbers in the MKK-deficient ovariectomized mice. These studies suggest that MKK3 and MKK6 differentially regulate bone loss due to estrogen withdrawal. MKK3 directly mediates osteoclastogenesis while MKK6 likely contributes to pro-inflammatory cytokine production that promotes osteoclast formation.


Subject(s)
Bone Resorption/metabolism , Osteoclasts/metabolism , Animals , Bone Resorption/etiology , Bone Resorption/genetics , Bone and Bones/metabolism , Bone and Bones/pathology , Female , Gene Expression , MAP Kinase Kinase 3/deficiency , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/deficiency , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , Mice , Mice, Knockout , Ovariectomy
12.
Front Physiol ; 2: 71, 2011.
Article in English | MEDLINE | ID: mdl-22028692

ABSTRACT

Sensing of infectious danger by toll-like receptors (TLRs) on macrophages causes not only a reprogramming of the transcriptome but also changes in the cytoskeleton important for cell spreading and motility. Since manual determination of cell contact areas from fluorescence micrographs is very time-consuming and prone to bias, we have developed and tested algorithms for automated measurement of macrophage spreading. The two-step method combines identification of cells by nuclear staining with DAPI and cell surface staining of the integrin CD11b. Automated image analysis correlated very well with manual annotation in resting macrophages and early after stimulation, whereas at later time points the automated cell segmentation algorithm and manual annotation showed slightly larger variation. The method was applied to investigate the impact of genetic or pharmacological inhibition of known TLR signaling components. Deficiency in the adapter protein Myd88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of MEK1, the kinase activating the mitogen-activated protein kinases (MAPK) ERK1/2, indicating that ERK1/2 mediates Myd88-dependent macrophages spreading. In contrast, macrophages lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The dichotomy of p38 and ERK1/2 MAPK effects on early and late macrophage spreading raises the question which of the respective substrate proteins mediate(s) cytoskeletal remodeling and spreading. The automated measurement of cell spreading described here increases the objectivity and greatly reduces the time required for such investigations and is therefore expected to facilitate larger throughput analysis of macrophage spreading, e.g., in siRNA knockdown screens.

13.
Phys Rev Lett ; 88(25 Pt 1): 250405, 2002 Jun 24.
Article in English | MEDLINE | ID: mdl-12097080

ABSTRACT

A systematic perturbation scheme is developed for approximate solutions to the time-dependent Schrödinger equation with a space-adiabatic Hamiltonian. For a particular isolated energy band, the basic approach is to separate kinematics from dynamics. The kinematics is defined through a subspace of the full Hilbert space for which transitions to other band subspaces are suppressed to all orders, and the dynamics operates in that subspace in terms of an effective intraband Hamiltonian. As novel applications, we discuss the Born-Oppenheimer theory to second order and derive for the first time the nonperturbative definition of the g factor of the electron within nonrelativistic quantum electrodynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...