Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Invest Dermatol ; 144(2): 341-350.e7, 2024 Feb.
Article En | MEDLINE | ID: mdl-37660781

A potential role for fibroblast growth factor receptor 2 (FGFR2) in cutaneous squamous cell carcinoma (cSCC) has been reported. To demonstrate the specific role of FGFR2 in UVB-induced skin carcinogenesis and development of cSCC, we generated a keratinocyte specific, tamoxifen inducible mouse model of FGFR2 deficiency. In this mouse model, topical application of 4-hydroxy tamoxifen led to the induction of Cre recombinase to delete FGFR2 in epidermal keratinocytes of both male and female transgenic mice. Analysis of epidermal protein lysates isolated from FGFR2 deficient mice exposed to UVB showed significant reductions of phospho-FGFR (pFGFR; Y653/654) and phospho-fibroblast growth factor receptor substrate 2α as well as downstream effectors of mTORC1 signaling. Phosphorylation of signal transducer and activators of transcription 1/3 was significantly reduced as well as levels of IRF-1, DUSP6, early growth response 1, and PD-L1 compared to the control groups. Keratinocyte-specific ablation of FGFR2 also significantly inhibited epidermal hyperproliferation, hyperplasia, and inflammation after exposure to UVB. Finally, keratinocyte-specific deletion of FGFR2 significantly inhibited UVB-induced cSCC formation. Collectively, the current data demonstrate an important role of FGFR2 in UVB-induced oncogenic signaling as well as development of cSCC. In addition, the current preclinical findings suggest that inhibition of FGFR2 signaling may provide a previously unreported strategy to prevent and/or treat UVB-induced cSCC.


Carcinoma, Squamous Cell , Skin Neoplasms , Animals , Female , Male , Mice , Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , Inflammation/metabolism , Keratinocytes/metabolism , Mice, Transgenic , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/prevention & control , Tamoxifen , Ultraviolet Rays/adverse effects
2.
J Invest Dermatol ; 142(11): 2873-2884.e7, 2022 11.
Article En | MEDLINE | ID: mdl-35551922

Altered fibroblast GF receptor (FGFR) signaling has been shown to play a role in a number of cancers. However, the role of FGFR signaling in the development and progression of UVB-induced cutaneous squamous cell carcinoma remains unclear. In this study, the effect of UVB radiation on FGFR activation and its downstream signaling in mouse skin epidermis was examined. In addition, the impact of FGFR inhibition on UVB-induced signaling and skin carcinogenesis was also investigated. Exposure of mouse dorsal skin to UVB significantly increased the phosphorylation of FGFRs in the epidermis as well as the activation of downstream signaling pathways, including protein kinase B/mTOR, signal transducers and activators of transcription, and MAPK. Topical application of the pan-FGFR inhibitor AZD4547 to mouse skin before exposure to UVB significantly inhibited FGFR phosphorylation as well as mTORC1, signal transducer and activator of transcription 3, and MAPK activation (i.e., phosphorylation). Moreover, AZD4547 pretreatment significantly inhibited UVB-induced epidermal hyperplasia and hyperproliferation and reduced the infiltration of mast cells and macrophages into the dermis. AZD4547 treatment also significantly inhibited mRNA expression of inflammatory genes in the epidermis. Finally, mice treated topically with AZD4547 before UVB exposure showed decreased cutaneous squamous cell carcinoma incidence and increased survival rate. Collectively, the current data support the hypothesis that inhibition of FGFR in the epidermis may provide a new strategy to prevent and/or treat UVB-induced cutaneous squamous cell carcinoma.


Carcinoma, Squamous Cell , Skin Neoplasms , Mice , Animals , Receptors, Fibroblast Growth Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Carcinoma, Squamous Cell/genetics , Skin Neoplasms/etiology , Skin Neoplasms/prevention & control , Skin Neoplasms/pathology , Ultraviolet Rays/adverse effects , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Carcinogenesis , RNA, Messenger
3.
Environ Res ; 186: 109586, 2020 07.
Article En | MEDLINE | ID: mdl-32353790

Evidence supports the link between air pollution and COVID-19 and thus it is likely that exposure to biomass smoke is associated with COVID-19. The poor, including refugees and migrant workers staying in fragile conditions, are most vulnerable. An outbreak of COVID-19 in a place where the concept of physical distancing is next to impossible could easily overwhelm the public health system. It is thus essential to understand the consequences of being exposed to smoke in relation to COVID-19 infection.


Air Pollution , Biomass , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Incineration , SARS-CoV-2 , Smoke
4.
Cancers (Basel) ; 11(8)2019 Aug 13.
Article En | MEDLINE | ID: mdl-31412651

DNA polymerase beta (Pol ß) is a key enzyme in the base excision repair (BER) pathway. Pol ß is mutated in approximately 40% of human tumors in small-scale studies. The 5´-deoxyribose-5-phosphate (dRP) lyase domain of Pol ß is responsible for DNA end tailoring to remove the 5' phosphate group. We previously reported that the dRP lyase activity of Pol ß is critical to maintain DNA replication fork stability and prevent cellular transformation. In this study, we tested the hypothesis that the human gastric cancer associated variant of Pol ß (L22P) has the ability to promote spontaneous chromosomal instability and carcinogenesis in mice. We constructed a Pol ß L22P conditional knock-in mouse model and found that L22P enhances hyperproliferation and DNA double strand breaks (DSBs) in stomach cells. Moreover, mouse embryonic fibroblasts (MEFs) derived from L22P mice frequently induce abnormal numbers of chromosomes and centrosome amplification, leading to chromosome segregation errors. Importantly, L22P mice exhibit chronic inflammation accompanied by stomach tumors. These data demonstrate that the human cancer-associated variant of Pol ß can contribute to chromosomal instability and cancer development.

5.
Cancers (Basel) ; 11(6)2019 Jun 18.
Article En | MEDLINE | ID: mdl-31216714

H. pylori is a significant risk factor of gastric cancer that induces chronic inflammation and oxidative DNA damage to promote gastric carcinoma. Base excision repair (BER) is required to maintain the genome integrity and prevent oxidative DNA damage. Mutation in DNA polymerase beta (Pol ß) impacts BER efficiency and has been reported in approximately 30-40% of gastric carcinoma tumors. In this study, we examined whether reduced BER capacity associated with mutation in the POLB gene, along with increased DNA damage generated by H. pylori infection, accelerates gastric cancer development. By infecting a Pol ß mutant mouse model that lacks dRP lyase with H. pylori, we show that reactive oxygen and nitrogen species (RONS) mediated DNA damage is accumulated in Pol ß mutant mice (L22P). In addition, H. pylori infection in Leu22Pro (L22P) mice significantly increases inducible nitric oxide synthesis (iNOS) mediated chronic inflammation. Our data show that L22P mice exhibited accelerated H. pylori induced carcinogenesis and increased tumor incidence. This work shows that Pol ß mediated DNA repair under chronic inflammation conditions is an important suppressor of H. pylori induced stomach carcinogenesis.

6.
J Med Chem ; 62(7): 3553-3574, 2019 04 11.
Article En | MEDLINE | ID: mdl-30938524

Phosphate and amino acid prodrugs of the HIV-1 protease inhibitor (PI) atazanavir (1) were prepared and evaluated to address solubility and absorption limitations. While the phosphate prodrug failed to release 1 in rats, the introduction of a methylene spacer facilitated prodrug activation, but parent exposure was lower than that following direct administration of 1. Val amino acid and Val-Val dipeptides imparted low plasma exposure of the parent, although the exposure of the prodrugs was high, reflecting good absorption. Screening of additional amino acids resulted in the identification of an l-Phe ester that offered an improved exposure of 1 and reduced levels of the circulating prodrug. Further molecular editing focusing on the linker design culminated in the discovery of the self-immolative l-Phe-Sar dipeptide derivative 74 that gave four-fold improved AUC and eight-fold higher Ctrough values of 1 compared with oral administration of the drug itself, demonstrating a successful prodrug approach to the oral delivery of 1.


Amino Acids/chemistry , Atazanavir Sulfate/chemistry , Atazanavir Sulfate/pharmacokinetics , Drug Design , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Phosphates/chemistry , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Atazanavir Sulfate/administration & dosage , Atazanavir Sulfate/chemical synthesis , Biological Availability , Esters , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/chemical synthesis , Humans , Prodrugs/administration & dosage , Prodrugs/chemical synthesis
7.
Thorax ; 73(11): 1026-1040, 2018 11.
Article En | MEDLINE | ID: mdl-29925674

OBJECTIVES: Improved biomass cookstoves may help reduce the substantial global burden of morbidity and mortality due to household air pollution (HAP) that disproportionately affects women and children in low and middle income countries (LMICs). DESIGN: Systematic review and meta-analysis of (quasi-)experimental studies identified from 13 electronic databases (last update: 6 April 2018), reference and citation searches and via expert consultation. SETTING: LMICs PARTICIPANTS: Women and children INTERVENTIONS: Improved biomass cookstoves MAIN OUTCOME MEASURES: Low birth weight (LBW), preterm birth, perinatal mortality, paediatric acute respiratory infections (ARIs) and COPD among women. RESULTS: We identified 53 eligible studies, including 24 that met prespecified design criteria. Improved cookstoves had no demonstrable impact on paediatric lower ARIs (three studies; 11 560 children; incidence rate ratio (IRR)=1.02 (95% CI 0.84 to 1.24)), severe pneumonia (two studies; 11 061 children; IRR=0.88 (95% CI 0.39 to 2.01)), LBW (one study; 174 babies; OR=0.74 (95% CI 0.33 to 1.66)) or miscarriages, stillbirths and infant mortality (one study; 1176 babies; risk ratio (RR) change=15% (95% CI -13 to 43)). No (quasi-)experimental studies assessed preterm birth or COPD. In observational studies, improved cookstoves were associated with a significant reduction in COPD among women: two studies, 9757 participants; RR=0.74 (95% CI 0.61 to 0.90). Reductions in cough (four studies, 1779 participants; RR=0.72 (95% CI 0.60 to 0.87)), phlegm (four studies, 1779 participants; RR=0.65 (95% CI 0.52 to 0.80)), wheezing/breathing difficulty (four studies; 1779 participants; RR=0.41 (95% CI 0.29 to 0.59)) and conjunctivitis (three studies, 892 participants; RR=0.58 (95% CI 0.43 to 0.78)) were observed among women. CONCLUSION: Improved cookstoves provide respiratory and ocular symptom reduction and may reduce COPD risk among women, but had no demonstrable child health impact. REGISTRATION: PROSPERO: CRD42016033075.


Air Pollution, Indoor/adverse effects , Child Health , Cooking/instrumentation , Environmental Exposure/adverse effects , Environmental Illness , Women's Health , Developing Countries , Environmental Illness/epidemiology , Environmental Illness/etiology , Environmental Illness/prevention & control , Global Health , Humans , Morbidity/trends
8.
BMC Public Health ; 17(1): 454, 2017 05 16.
Article En | MEDLINE | ID: mdl-28511647

BACKGROUND: Biomass fuel is used as a primary cooking source by more than half of the world's population, contributing to a high burden of disease. Although cleaner fuels are available, some households continue using solid fuels because of financial constraints and absence of infrastructure, especially in non-notified slums. The present study documents a randomised controlled study investigating the efficacy of improved cookstove on the personal exposure to air pollution and the respiratory health of women and children in an Indian slum. The improved cookstove was based on co-creation of a low-smoke chulha with local communities in order to support adaption and sustained uptake. METHODS: The study will be conducted in a non-notified slum called Ashrayanagar in Bangalore, India. The study design will be a 1:1 randomised controlled intervention trial, including 250 households. The intervention group will receive an improved cookstove (low-smoke chulha) and the control group will continue using either the traditional cookstove (chulha) or a combination of the traditional stove and the kerosene/diesel stove. Follow-up time is 1 year. Outcomes include change in lung function (FEV1/FVC), incidence of pneumonia, change in personal PM2.5 and CO exposure, incidence of respiratory symptoms (cough, phlegm, wheeze and shortness of breath), prevalence of other related symptoms (headache and burning eyes), change in behaviour and adoption of the stove. Ethical clearance was obtained from the Institutional Ethics Committee of the Indian Institute of Public Health Hyderabad- Bengaluru Campus. DISCUSSION: The findings from this study aim to provide insight into the effects of improved cookstoves in urban slums. Results can give evidence for the decrease of indoor air pollution and the improvement of respiratory health for children and women. TRIAL REGISTRATION: The trial was registered with clinicaltrials.gov on 21 June 2016 with the identifier NCT02821650 ; A Study to Test the Impact of an Improved Chulha on the Respiratory Health of Women and Children in Indian Slums.


Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Cooking/methods , Poverty Areas , Smoke/analysis , Smoke/prevention & control , Adult , Carbon Compounds, Inorganic/analysis , Child , Female , Humans , India , Particulate Matter/analysis , Pneumonia/epidemiology , Research Design , Respiratory Function Tests , Sulfides/analysis , Urban Population
9.
Oncotarget ; 8(68): 112942-112958, 2017 Dec 22.
Article En | MEDLINE | ID: mdl-29348879

DNA endonuclease eight-like glycosylase 3 (NEIL3) is one of the DNA glycosylases that removes oxidized DNA base lesions from single-stranded DNA (ssDNA) and non-B DNA structures. Approximately seven percent of human tumors have an altered NEIL3 gene. However, the role of NEIL3 in replication-associated repair and its impact on modulating treatment response is not known. Here, we report that NEIL3 is localized at the DNA double-strand break (DSB) sites during oxidative DNA damage and replication stress. Loss of NEIL3 significantly increased spontaneous replication-associated DSBs and recruitment of replication protein A (RPA). In contrast, we observed a marked decrease in Rad51 on nascent DNA strands at the replication fork, suggesting that HR-dependent repair is compromised in NEIL3-deficient cells. Interestingly, NEIL3-deficient cells were sensitive to ataxia-telangiectasia and Rad3 related protein (ATR) inhibitor alone or in combination with PARP1 inhibitor. This study elucidates the mechanism by which NEIL3 is critical to overcome oxidative and replication-associated genotoxic stress. Our findings may have important clinical implications to utilize ATR and PARP1 inhibitors to enhance cytotoxicity in tumors that carry altered levels of NEIL3.

11.
Drug Metab Lett ; 6(2): 134-44, 2012 Jun 01.
Article En | MEDLINE | ID: mdl-23061481

In the present study we have developed a simple, time, and cost effective in vivo rodent protocol to screen the susceptibility of a test compound for P-glycoprotein (P-gp) mediated efflux at the blood brain barrier (BBB) during early drug discovery. We used known P-gp substrates as test compounds (quinidine, digoxin, and talinolol) and elacridar (GF120918) as a chemical inhibitor to establish the model. The studies were carried out in both mice and rats. Elacridar was dosed intravenously at 5 mg/kg, 0.5 h prior to probe substrate administration. Plasma and brain samples were collected and analyzed using UPLC-MS/MS. In the presence of elacridar, the ratio of brain to plasma area under the curve (B/P) in mouse increased 2, 4, and 38-fold, respectively, for talinolol, digoxin, and quinidine; whereas in rat, a 70-fold increase was observed for quinidine. Atenolol, a non P-gp substrate, exhibited poor brain penetration in the presence or absence of elacridar in both species (B/P ratio ~ 0.1). Elacridar had no significant effect on the systemic clearance of digoxin or quinidine; however, a trend towards increasing volume of distribution and half life was observed. Our results support the utility of elacridar in evaluation of the influence of P-gp mediated efflux on drug distribution to the brain. Our protocol employing a single intravenous dose of elacridar and test compound provides a cost effective alternative to expensive P-gp knockout mice models during early drug discovery.


ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Acridines/pharmacology , Blood-Brain Barrier/metabolism , Brain/metabolism , Tetrahydroisoquinolines/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Acridines/administration & dosage , Animals , Area Under Curve , Biological Transport , Chromatography, Liquid , Cost-Benefit Analysis , Digoxin/pharmacokinetics , Drug Design , Drug Interactions , Half-Life , Injections, Intravenous , Male , Mice , Propanolamines/pharmacokinetics , Quinidine/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Tetrahydroisoquinolines/administration & dosage , Time Factors , Tissue Distribution
...