Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Dent ; 109: 103655, 2021 06.
Article En | MEDLINE | ID: mdl-33798640

INTRODUCTION/OBJECTIVE: The tailored amorphous multi-porous (TAMP) material fabrication technology has led to a new class of bioactive materials possessing versatile characteristics. It has not been tested for dental applications. Thus, we aimed to assess its biocompatibility and ability to regenerate dental mineral tissue. METHODS: 30CaO-70SiO2 model TAMP discs were fabricated by a sol-gel method followed by in vitro biocompatibility testing with isolated human or mini-swine dental pulp stem cells (DPSCs). TAMP scaffolds were tested in vivo as a pulp exposure (pin-point, 1 mm, 2 mm, and entire pulp chamber roof) capping material in the molar teeth of mini-swine. RESULTS: The in vitro assays showed that DPSCs attached well onto the TAMP discs with comparable viability to those attached to culture plates. Pulp capping tests on mini-swine showed that after 4.5 months TAMP material was still present at the capping site, and mineral tissue (dentin bridge) had formed in all sizes of pulp exposure underneath the TAMP material. CONCLUSIONS: TAMP calcium silicate is biocompatible with both human and swine DPSCs in vitro and with pulp in vivo, it may help regenerate the dentin bridge after pulp exposure.


Dental Pulp Capping , Regenerative Endodontics , Animals , Calcium Compounds , Dental Pulp , Silicates , Swine
2.
Sci Rep ; 11(1): 5763, 2021 03 11.
Article En | MEDLINE | ID: mdl-33707489

The nanostructure of engineered bioscaffolds has a profound impact on cell response, yet its understanding remains incomplete as cells interact with a highly complex interfacial layer rather than the material itself. For bioactive glass scaffolds, this layer comprises of silica gel, hydroxyapatite (HA)/carbonated hydroxyapatite (CHA), and absorbed proteins-all in varying micro/nano structure, composition, and concentration. Here, we examined the response of MC3T3-E1 pre-osteoblast cells to 30 mol% CaO-70 mol% SiO2 porous bioactive glass monoliths that differed only in nanopore size (6-44 nm) yet resulted in the formation of HA/CHA layers with significantly different microstructures. We report that cell response, as quantified by cell attachment and morphology, does not correlate with nanopore size, nor HA/CHO layer micro/nano morphology, or absorbed protein amount (bovine serum albumin, BSA), but with BSA's secondary conformation as indicated by its ß-sheet/α-helix ratio. Our results suggest that the ß-sheet structure in BSA interacts electrostatically with the HA/CHA interfacial layer and activates the RGD sequence of absorbed adhesion proteins, such as fibronectin and vitronectin, thus significantly enhancing the attachment of cells. These findings provide new insight into the interaction of cells with the scaffolds' interfacial layer, which is vital for the continued development of engineered tissue scaffolds.


Glass/chemistry , Nanostructures/chemistry , Osteocytes/cytology , Proteins/chemistry , Adsorption , Animals , Carbonates/chemistry , Cell Adhesion , Cell Count , Cell Line , Cell Size , Durapatite/chemistry , Mice , Nanopores , Nanostructures/ultrastructure , Protein Structure, Secondary , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared
3.
J Biomed Mater Res B Appl Biomater ; 107(4): 886-899, 2019 05.
Article En | MEDLINE | ID: mdl-30267633

For hard tissue regeneration, the bioactivity of a material is measured by its ability to induce the formation of hydroxyapatite (HA) under physiological conditions. It depends on the dissolution behavior of the glass, which itself is determined by the composition and structure of glass. The enhanced HA growth on nanoporous than on nonporous glass has been attributed by some to greater specific surface area (SSA), but to nanopore size distribution by others. To decouple the influence of nanopore size and SSA on HA formation, we have successfully fabricated homogeneous 30CaO-70SiO2 (30C70S) model bioactive glass monoliths with different nanopore sizes, yet similar SSA via a combination of sol-gel, solvent exchange, and sintering processes. After incubation in PBS, HA, and Type-B carbonated HA (HA/B-CHA) form on nanoporous monoliths. The XPS, FTIR, and SEM analyses provide the first unambiguous demonstration of the influence of nanopore size alone on the formation pathway, growth rate, and microstructure of HA/CHA. Due to pore-size limited diffusion of PO43- , two HA/CHA formation pathways are observed: HA/CHA surface deposition and/or HA/CHA incorporation into nanopores. HA/CHA growth rate on the surface of a nanoporous glass monolith is dominated by the pore-size limited transport of Ca2+ ions dissolved from nanoporous glass substrates. Furthermore, with increasing nanopore size, HA/CHA microstructures evolve from needle-like, plate-like, to flower-like appearance. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 886-899, 2019.


Calcium Compounds/chemistry , Durapatite/chemistry , Glass/chemistry , Models, Chemical , Silicates/chemistry , Porosity
4.
Biomed Mater ; 13(2): 025005, 2018 01 24.
Article En | MEDLINE | ID: mdl-29033393

Tissue regeneration is a significantly improved alternative to tissue replacement by implants. It requires porous bioscaffolds for the restoration of natural tissue rather than relying on bio-inactive, often metallic implants. Recently, we developed technology for fabricating novel, nano-macroporous bioactive 'tailored amorphous multi-porous (TAMP)' hard tissue scaffolds using a 70 mol% SiO2-30 mol% CaO model composition. The TAMP silicate scaffolds, fabricated by a modified sol-gel process, have shown excellent biocompatibility via the rapid formation of hydroxyapatite in biological fluids as well as in early tests with bone forming cells. Here we report an in depth investigation of the response of MC3T3-E1 pre-osteoblast cells and bone marrow derived (BMD) osteoclasts to these TAMP scaffolds. Light and electron microscopic imaging, gene and protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-osteoblasts adhere, proliferate, colonize, and differentiate on and inside the bioactive TAMP scaffolds. Additionally, BMD precursor cells mature into active osteoclasts and remodel the scaffold, highlighting the exceptional qualities of this novel scaffold material for bone tissue regeneration.


Biocompatible Materials , Bone Regeneration , Glass , Osteoblasts/cytology , Osteoclasts/cytology , Tissue Scaffolds/chemistry , 3T3 Cells , Animals , Bone and Bones/pathology , Cell Adhesion , Cell Differentiation , Cell Proliferation , Coculture Techniques , Durapatite/chemistry , Mice , Microscopy, Electron, Scanning , Models, Animal , Porosity , Rats , Rats, Sprague-Dawley , Silicates/chemistry , Silicon Dioxide , Tissue Engineering/methods
5.
J Mater Sci Mater Med ; 28(10): 161, 2017 Sep 13.
Article En | MEDLINE | ID: mdl-28905286

We analyzed the biological performance of spinodally and droplet-type phase-separated 45S5 Bioglass® generated by quenching the melt from different equilibrium temperatures. MC3T3-E1 pre-osteoblast cells attached more efficiently to 45S5 Bioglass® with spinodal than to the one with droplet morphology, providing the first demonstration of the role of micro-/nano-scale on the bioactivity of Bioglass®. Upon exposure to biological solutions, phosphate buffered saline (PBS) and cell culture medium (α-MEM), a layer of hydroxyapatite (HA) formed on both glass morphologies. Although both Bioglass® varieties were incubated under identical conditions, and physico-chemical characteristics of the HA layers were similar, the adsorption magnitude of a model protein, bovine serum albumin (BSA, an abundant blood serum component) and its ß-sheet/ß-turn ratio and α-helix content were significantly higher on spinodal than droplet type Bioglass®. These results indicate that: (i) a protein layer quickly adsorbs on the surface of 45S5 Bioglass® varieties (with or without HA layer), (ii) the amount and the conformation of adsorbed proteins are guided by the glass micro-/nano-structure, and (iii) cell attachment and proliferation are influenced by the concentration and the conformation of attached proteins with a significantly better cell adhesion to spinodal type 45S5 Bioglass® substrate. Taken together, our results indicate that the biological performance of 45S5 Bioglass® can be improved further with a relatively simple, inexpensive fabrication procedure that provides a superior glass micro-/nano-structure. A simple modification to the fabrication procedure of classic 45S5 Bioglass® generates spinodal (A(a)) and droplet (A(b)) varieties and has a significant impact on protein adsorption (B) and cell adhesion (C).


Ceramics/chemistry , Glass/chemistry , Phase Transition , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Ceramics/pharmacology , Culture Media/pharmacology , Durapatite/chemistry , Materials Testing , Mice , Organic Chemicals/pharmacology , Osteoblasts/cytology , Osteoblasts/drug effects , Surface Properties
...