Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(44): eadh3642, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922361

ABSTRACT

Unintegrated retroviral DNA is transcriptionally silenced by host chromatin silencing factors. Here, we used the proteomics of isolated chromatin segments method to reveal viral and host factors associated with unintegrated HIV-1DNA involved in its silencing. By gene silencing using siRNAs, 46 factors were identified as potential repressors of unintegrated HIV-1DNA. Knockdown and knockout experiments revealed POLE3 as a transcriptional repressor of unintegrated HIV-1DNA. POLE3 maintains unintegrated HIV-1DNA in a repressive chromatin state, preventing RNAPII recruitment to the viral promoter. POLE3 and the recently identified host factors mediating unintegrated HIV-1 DNA silencing, CAF1 and SMC5/SMC6/SLF2, show specificity toward different forms of unintegrated HIV-1DNA. Loss of POLE3 impaired HIV-1 replication, suggesting that repression of unintegrated HIV-1DNA is important for optimal viral replication. POLE3 depletion reduces the integration efficiency of HIV-1. POLE3, by maintaining a repressive chromatin structure of unintegrated HIV-1DNA, ensures HIV-1 escape from innate immune sensing in primary CD4+ T cells.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , DNA, Viral/genetics , Chromatin/genetics , Virus Integration , HIV Infections/genetics , Immunity, Innate
2.
Proc Natl Acad Sci U S A ; 117(12): 6822-6830, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32161134

ABSTRACT

The aim of the present study was to understand the biology of unintegrated HIV-1 DNA and reveal the mechanisms involved in its transcriptional silencing. We found that histones are loaded on HIV-1 DNA after its nuclear import and before its integration in the host genome. Nucleosome positioning analysis along the unintegrated and integrated viral genomes revealed major differences in nucleosome density and position. Indeed, in addition to the well-known nucleosomes Nuc0, Nuc1, and Nuc2 loaded on integrated HIV-1 DNA, we also found NucDHS, a nucleosome that covers the DNase hypersensitive site, in unintegrated viral DNA. In addition, unintegrated viral DNA-associated Nuc0 and Nuc2 were positioned slightly more to the 5' end relative to their position in integrated DNA. The presence of NucDHS in the proximal region of the long terminal repeat (LTR) promoter was associated with the absence of RNAPII and of the active histone marks H3K4me3 and H3ac at the LTR. Conversely, analysis of integrated HIV-1 DNA showed a loss of NucDHS, loading of RNAPII, and enrichment in active histone marks within the LTR. We propose that unintegrated HIV-1 DNA adopts a repressive chromatin structure that competes with the transcription machinery, leading to its silencing.


Subject(s)
Chromatin Assembly and Disassembly , DNA, Viral/genetics , HIV Infections/genetics , HIV-1/genetics , Histones/genetics , Nucleosomes/genetics , Virus Integration/genetics , Gene Expression Regulation, Viral , Genome, Viral , HIV Infections/virology , Humans , Terminal Repeat Sequences , Transcription, Genetic
3.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266880

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) Tat binds the viral RNA structure transactivation-responsive element (TAR) and recruits transcriptional cofactors, amplifying viral mRNA expression. The Tat inhibitor didehydro-cortistatin A (dCA) promotes a state of persistent latency, refractory to viral reactivation. Here we investigated mechanisms of HIV-1 resistance to dCA in vitro Mutations in Tat and TAR were not identified, consistent with the high level of conservation of these elements. Instead, viruses resistant to dCA developed higher Tat-independent basal transcription. We identified a combination of mutations in the HIV-1 promoter that increased basal transcriptional activity and modifications in viral Nef and Vpr proteins that increased NF-κB activity. Importantly, these variants are unlikely to enter latency due to accrued transcriptional fitness and loss of sensitivity to Tat feedback loop regulation. Furthermore, cells infected with these variants become more susceptible to cytopathic effects and immune-mediated clearance. This is the first report of viral escape to a Tat inhibitor resulting in heightened Tat-independent activity, all while maintaining wild-type Tat and TAR.IMPORTANCE HIV-1 Tat enhances viral RNA transcription by binding to TAR and recruiting activating factors. Tat enhances its own transcription via a positive-feedback loop. Didehydro-cortistatin A (dCA) is a potent Tat inhibitor, reducing HIV-1 transcription and preventing viral rebound. dCA activity demonstrates the potential of the "block-and-lock" functional cure approaches. We investigated the viral genetic barrier to dCA resistance in vitro While mutations in Tat and TAR were not identified, mutations in the promoter and in the Nef and Vpr proteins promoted high Tat-independent activity. Promoter mutations increased the basal transcription, while Nef and Vpr mutations increased NF-κB nuclear translocation. This heightened transcriptional activity renders CD4+ T cells infected with these viruses more susceptible to cytotoxic T cell-mediated killing and to cell death by cytopathic effects. Results provide insights on drug resistance to a novel class of antiretrovirals and reveal novel aspects of viral transcriptional regulation.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , Gene Expression Regulation, Viral , HIV-1/growth & development , Heterocyclic Compounds, 4 or More Rings/pharmacology , Isoquinolines/pharmacology , Transcription, Genetic , tat Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Cell Line , HIV-1/genetics , Humans , RNA, Messenger/biosynthesis , RNA, Viral/biosynthesis , Up-Regulation , tat Gene Products, Human Immunodeficiency Virus/genetics
4.
FASEB J ; 33(7): 8280-8293, 2019 07.
Article in English | MEDLINE | ID: mdl-31021670

ABSTRACT

The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity. In human CD4+ T cells isolated from aviremic individuals and in the humanized mouse model of latency, combining dCA with antiretroviral therapy accelerates HIV-1 suppression and delays viral rebound upon treatment interruption. This drug class is amenable to block-and-lock functional cure approaches, aimed at a durable state of latency. Simian immunodeficiency virus (SIV) infection of rhesus macaques (RhMs) is the best-characterized model for AIDS research. Here, we demonstrate, using in vitro and cell-based assays, that dCA directly binds to SIV Tat's basic domain. dCA specifically inhibits SIV Tat binding to TAR, but not a Tat-Rev fusion protein, which activates transcription when Rev binds to its cognate RNA binding site replacing the apical region of TAR. Tat-TAR inhibition results in loss of RNA polymerase II recruitment to the SIV promoter. Importantly, dCA potently inhibits SIV reactivation from latently infected Hut78 cells and from primary CD4+ T cells explanted from SIVmac239-infected RhMs. In sum, dCA's remarkable breadth of activity encourages SIV-infected RhM use for dCA preclinical evaluation.-Mediouni, S., Kessing, C. F., Jablonski, J. A., Thenin-Houssier, S., Clementz, M., Kovach, M. D., Mousseau, G., de Vera, I.M.S., Li, C., Kojetin, D. J., Evans, D. T., Valente, S. T. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Products, tat/antagonists & inhibitors , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/physiology , Virus Activation/drug effects , Virus Replication/drug effects , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Gene Products, tat/metabolism , HEK293 Cells , HeLa Cells , Heterocyclic Compounds, 4 or More Rings , Humans , Isoquinolines , Macaca mulatta , Promoter Regions, Genetic , Simian Acquired Immunodeficiency Syndrome/pathology , Terminal Repeat Sequences
5.
Curr HIV Res ; 14(3): 270-82, 2016.
Article in English | MEDLINE | ID: mdl-26957201

ABSTRACT

BACKGROUND: The infectious human immunodeficiency virus (HIV) particle is characterized by a conical capsid that encloses the viral RNA genome. The capsid is essential for HIV-1 replication and plays crucial roles in both early and late stages of the viral life cycle. Early on, upon fusion of the viral and cellular membranes, the viral capsid is released into the host cell cytoplasm and dissociates in a process known as uncoating, tightly associated with the reverse transcription of the viral genome. During the late stages of viral replication, the Gag polyprotein, precursor of the capsid protein, assemble at the plasma membrane to form immature non-infectious viral particles. After a maturation step by the viral protease, the capsid assembles to form a fullerene-like conical shape characteristic of the mature infectious particle. Mutations affecting the uncoating process, or capsid assembly and maturation, have been shown to hamper viral infectivity. The key role of capsid in viral replication and the absence of approved drugs against this protein have promoted the development of antiretrovirals. Screening based on the inhibition of capsid assembly and virtual screening for molecules binding to the capsid have successfully identified a number of potential small molecule compounds. Unfortunately, none of these molecules is currently used in the clinic. CONCLUSION: Here we review the discovery and the mechanism of action of the small molecules and peptides identified as capsid inhibitors, and discuss their therapeutic potential.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Capsid Proteins/antagonists & inhibitors , Drug Discovery , HIV-1/drug effects , HIV-1/physiology , Animals , Capsid Proteins/chemistry , Capsid Proteins/metabolism , HIV Infections/drug therapy , HIV Infections/virology , Humans , Treatment Outcome , Virion , Virus Replication/drug effects
6.
Antimicrob Agents Chemother ; 60(4): 2195-208, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26810656

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development.


Subject(s)
Anti-HIV Agents/pharmacology , Azoles/pharmacology , Capsid Proteins/antagonists & inhibitors , Capsid/drug effects , HIV-1/drug effects , Organoselenium Compounds/pharmacology , Small Molecule Libraries/pharmacology , Anti-HIV Agents/chemistry , Azoles/chemistry , Binding Sites , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Databases, Pharmaceutical , Fluorescence Resonance Energy Transfer , HIV-1/physiology , HeLa Cells , High-Throughput Screening Assays , Humans , Isoindoles , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Moloney murine leukemia virus/drug effects , Moloney murine leukemia virus/physiology , Organoselenium Compounds/chemistry , Protein Binding , Protein Domains , Protein Multimerization/drug effects , Protein Structure, Secondary , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/physiology , Small Molecule Libraries/chemistry , Virus Assembly/drug effects , Virus Assembly/physiology , Virus Replication/drug effects
7.
Curr HIV Res ; 13(1): 64-79, 2015.
Article in English | MEDLINE | ID: mdl-25613133

ABSTRACT

HIV-1 Tat protein has been shown to have a crucial role in HIV-1-associated neurocognitive disorders (HAND), which includes a group of syndromes ranging from undetectable neurocognitive impairment to dementia. The abuse of psychostimulants, such as cocaine, by HIV infected individuals, may accelerate and intensify neurological damage. On the other hand, exposure to Tat potentiates cocaine-mediated reward mechanisms, which further promotes HAND. Here, we show that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid, crosses the blood-brain barrier, cross-neutralizes Tat activity from several HIV-1 clades and decreases Tat uptake by glial cell lines. In addition, dCA potently inhibits Tat mediated dysregulation of IL-1ß, TNF-α and MCP-1, key neuroinflammatory signaling proteins. Importantly, using a mouse model where doxycycline induces Tat expression, we demonstrate that dCA reverses the potentiation of cocaine-mediated reward. Our results suggest that adding a Tat inhibitor, such as dCA, to current antiretroviral therapy may reduce HIV-1-related neuropathogenesis.


Subject(s)
Anti-HIV Agents/pharmacology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Isoquinolines/pharmacology , Reward , tat Gene Products, Human Immunodeficiency Virus/physiology , Animals , Anti-HIV Agents/pharmacokinetics , Chemokines/metabolism , Cocaine/adverse effects , Cytokines/metabolism , Disease Models, Animal , HIV Infections/complications , HIV Infections/drug therapy , HIV-1/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Inflammation/metabolism , Isoquinolines/pharmacokinetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurocognitive Disorders/etiology , Neurocognitive Disorders/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...