Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Brain Behav Immun ; 123: 244-253, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293691

ABSTRACT

Identifying the origins and contributions of peripheral-derived immune cell populations following brain injury is crucial for understanding their roles in neuroinflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after traumatic brain injury (TBI). We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells were present in the ipsilateral injured cortex, expressing CD45 and CD11b immune markers. These cells included Ly6G-positive neutrophil or Ccr2-positive monocyte identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MERTK and displayed engulfment of NeuN+ and cleaved caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocytes/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+cells predominantly infiltrated the lesion boundary, while blood-derived tdTomato+ cells dispersed throughout the lesion and peri-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone marrow-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.

2.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948756

ABSTRACT

Identifying the origins and contributions of different immune cell populations following brain injury is crucial for understanding their roles in inflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after TBI. We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells infiltrating the ipsilateral core lesional area, expressing CD45 and CD11b immune markers. These cells included neutrophil (Ly6G+) and monocyte (Ccr2+) identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MerTK and displayed engulfment of NeuN+ and caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocyte/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+ cells predominantly infiltrated the lesion boundary, while blood-derived TdTomato+ cells dispersed throughout the lesion and peri-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.

3.
Sci Rep ; 14(1): 8367, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600221

ABSTRACT

Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Humans , Animals , Epilepsy, Post-Traumatic/etiology , Astrocytes/metabolism , Transcriptome , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Seizures , Gene Expression Profiling , Disease Models, Animal
4.
Front Neurol ; 15: 1334847, 2024.
Article in English | MEDLINE | ID: mdl-38450073

ABSTRACT

Acquired traumatic central nervous system (CNS) injuries, including traumatic brain injury (TBI) and spinal cord injury (SCI), are devastating conditions with limited treatment options. Neuroinflammation plays a pivotal role in secondary damage, making it a prime target for therapeutic intervention. Emerging therapeutic strategies are designed to modulate the inflammatory response, ultimately promoting neuroprotection and neuroregeneration. The use of anti-inflammatory agents has yielded limited support in improving outcomes in patients, creating a critical need to re-envision novel approaches to both quell deleterious inflammatory processes and upend the progressive cycle of neurotoxic inflammation. This demands a comprehensive exploration of individual, age, and sex differences, including the use of advanced imaging techniques, multi-omic profiling, and the expansion of translational studies from rodents to humans. Moreover, a holistic approach that combines pharmacological intervention with multidisciplinary neurorehabilitation is crucial and must include both acute and long-term care for the physical, cognitive, and emotional aspects of recovery. Ongoing research into neuroinflammatory biomarkers could revolutionize our ability to predict, diagnose, and monitor the inflammatory response in real time, allowing for timely adjustments in treatment regimens and facilitating a more precise evaluation of therapeutic efficacy. The management of neuroinflammation in acquired traumatic CNS injuries necessitates a paradigm shift in our approach that includes combining multiple therapeutic modalities and fostering a more comprehensive understanding of the intricate neuroinflammatory processes at play.

5.
J Neurosci ; 44(12)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38360749

ABSTRACT

While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-ß (IL-1ß), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.


Subject(s)
Brain Injuries, Traumatic , Microglia , Animals , Male , Mice , Brain Injuries, Traumatic/pathology , Cytokines/metabolism , Interferons/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Signal Transduction
6.
J Neuroinflammation ; 21(1): 41, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310257

ABSTRACT

Monocytes represent key cellular elements that contribute to the neurological sequela following brain injury. The current study reveals that trauma induces the augmented release of a transcriptionally distinct CD115+/Ly6Chi monocyte population into the circulation of mice pre-exposed to clodronate depletion conditions. This phenomenon correlates with tissue protection, blood-brain barrier stability, and cerebral blood flow improvement. Uniquely, this shifted the innate immune cell profile in the cortical milieu and reduced the expression of pro-inflammatory Il6, IL1r1, MCP-1, Cxcl1, and Ccl3 cytokines. Monocytes that emerged under these conditions displayed a morphological and gene profile consistent with a subset commonly seen during emergency monopoiesis. Single-cell RNA sequencing delineated distinct clusters of monocytes and revealed a key transcriptional signature of Ly6Chi monocytes enriched for Apoe and chitinase-like protein 3 (Chil3/Ym1), commonly expressed in pro-resolving immunoregulatory monocytes, as well as granule genes Elane, Prtn3, MPO, and Ctsg unique to neutrophil-like monocytes. The predominate shift in cell clusters included subsets with low expression of transcription factors involved in monocyte conversion, Pou2f2, Na4a1, and a robust enrichment of genes in the oxidative phosphorylation pathway which favors an anti-inflammatory phenotype. Transfer of this monocyte assemblage into brain-injured recipient mice demonstrated their direct role in neuroprotection. These findings reveal a multifaceted innate immune response to brain injury and suggest targeting surrogate monocyte subsets may foster tissue protection in the brain.


Subject(s)
Brain Injuries , Monocytes , Mice , Animals , Monocytes/metabolism , Neutrophils/metabolism , Brain Injuries/metabolism , Brain/metabolism , Gene Expression Profiling , Cathepsin G/metabolism
7.
J Neuroinflammation ; 20(1): 256, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37941008

ABSTRACT

BACKGROUND: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS: We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS: Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS: Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.


Subject(s)
Axon Guidance , Brain Injuries , Mice , Animals , c-Mer Tyrosine Kinase/metabolism , Apoptosis , Phagocytosis/physiology , Mice, Knockout , RNA, Messenger , STAT6 Transcription Factor/metabolism
8.
Proc Natl Acad Sci U S A ; 120(41): e2204700120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37796990

ABSTRACT

Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.


Subject(s)
Blood-Brain Barrier , Brain Injuries, Traumatic , Receptor, EphA4 , Animals , Mice , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Mice, Knockout , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Receptor, EphA4/genetics , Receptor, EphA4/metabolism
9.
Res Sq ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37461720

ABSTRACT

Background: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation and prevents the release of inflammatory molecules and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remains ill-defined. Methods: We demonstrate using GFP bone marrow chimeric knockout (KO) mice, that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing Mertk signaling in the brain to restrict the function of efferocytosis on resident microglia and peripheral-derived monocyte/macrophages. Results: Single-cell RNAseq identified Mertk expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis, and overall protein expression of p-Mertk, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with Mertk-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Select inhibitors of ERK and Stat6 attenuated this effect confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. Conclusions: Our findings implicate the Mertk/ERK/Stat6 axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.

10.
Nat Commun ; 14(1): 3635, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336876

ABSTRACT

Cryptic sites are short signaling peptides buried within the native extracellular matrix (ECM). Enzymatic cleavage of an ECM protein reveals these hidden peptide sequences, which interact with surface receptors to control cell behavior. Materials that mimic this dynamic interplay between cells and their surroundings via cryptic sites could enable application of this endogenous signaling phenomenon in synthetic ECM hydrogels. We demonstrate that depsipeptides ("switch peptides") can undergo enzyme-triggered changes in their primary sequence, with proof-of-principle studies showing how trypsin-triggered primary sequence rearrangement forms the bioadhesive pentapeptide YIGSR. We then engineered cryptic site-mimetic synthetic ECM hydrogels that experienced a cell-initiated gain of bioactivity. Responding to the endothelial cell surface enzyme aminopeptidase N, the inert matrix transformed into an adhesive synthetic ECM capable of supporting endothelial cell growth. This modular system enables dynamic reciprocity in synthetic ECMs, reproducing the natural symbiosis between cells and their matrix through inclusion of tunable hidden signals.


Subject(s)
Extracellular Matrix , Peptides , Extracellular Matrix/metabolism , Peptides/metabolism , Extracellular Matrix Proteins/metabolism , Endothelial Cells , Hydrogels/metabolism
11.
Cells ; 12(9)2023 04 25.
Article in English | MEDLINE | ID: mdl-37174647

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS: Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS: CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS: These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Mice , Animals , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/pathology , Gliosis/complications , Brain Injuries, Traumatic/complications , Seizures , Interneurons/metabolism
12.
Cells ; 11(21)2022 10 25.
Article in English | MEDLINE | ID: mdl-36359758

ABSTRACT

Neurological disorders are highly prevalent and often lead to chronic debilitating disease. Neuroinflammation is a major driver across the spectrum of disorders, and microglia are key mediators of this response, gaining wide acceptance as a druggable cell target. Moreover, clinical providers have limited ability to objectively quantify patient-specific changes in microglia status, which can be a predictor of illness and recovery. This necessitates the development of diagnostic biomarkers and imaging techniques to monitor microglia-mediated neuroinflammation in coordination with neurological outcomes. New insights into the polarization status of microglia have shed light on the regulation of disease progression and helped identify a modifiable target for therapeutics. Thus, the detection and monitoring of microglia activation through the inclusion of diagnostic biomarkers and imaging techniques will provide clinical tools to aid our understanding of the neurologic sequelae and improve long-term clinical care for patients. Recent achievements demonstrated by pre-clinical studies, using novel depletion and cell-targeted approaches as well as single-cell RNAseq, underscore the mechanistic players that coordinate microglial activation status and offer a future avenue for therapeutic intervention.


Subject(s)
Microglia , Nervous System Diseases , Animals , Mice , Humans , Microglia/physiology , Mice, Inbred C57BL , Myeloid Cells , Biomarkers
14.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: mdl-35737458

ABSTRACT

Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.


Subject(s)
Brain Injuries , Monocytes , Humans , Brain Injuries/metabolism , Ephrins/metabolism , Monocytes/metabolism , Phenotype , Receptor, EphB2/metabolism , Animals , Mice
15.
Front Mol Neurosci ; 15: 852243, 2022.
Article in English | MEDLINE | ID: mdl-35283725

ABSTRACT

Background: Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods: Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results: We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions: These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.

16.
WIREs Mech Dis ; 14(4): e1553, 2022 07.
Article in English | MEDLINE | ID: mdl-35118835

ABSTRACT

Arterial collateralization, as determined by leptomeningeal anastomoses or pial collateral vessels, is a well-established vital player in cerebral blood flow restoration and neurological recovery from ischemic stroke. A secondary network of cerebral collateral circulation apart from the Circle of Willis, exist as remnants of arteriole development that connect the distal arteries in the pia mater. Recent interest lies in understanding the cellular and molecular adaptations that control the growth and remodeling, or arteriogenesis, of these pre-existing collateral vessels. New findings from both animal models and human studies of ischemic stroke suggest a multi-factorial and complex, temporospatial interplay of endothelium, immune and vessel-associated cell interactions may work in concert to facilitate or thwart arteriogenesis. These valuable reports may provide critical insight into potential predictors of the pial collateral response in patients with large vessel occlusion and may aid in therapeutics to enhance collateral function and improve recovery from stroke. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.


Subject(s)
Ischemic Stroke , Stroke , Animals , Cerebrovascular Circulation/physiology , Collateral Circulation/physiology , Humans , Meninges
17.
BME Front ; 2022: 9864910, 2022.
Article in English | MEDLINE | ID: mdl-37850177

ABSTRACT

Objective and Impact Statement. This study examined the efficacy and safety of pulsed, low-intensity focused ultrasound (LIFU) and determined its ability to provide neuroprotection in a murine permanent middle cerebral artery occlusion (pMCAO) model. Introduction. Focused ultrasound (FUS) has emerged as a new therapeutic strategy for the treatment of ischemic stroke; however, its nonthrombolytic properties remain ill-defined. Therefore, we examined how LIFU influenced neuroprotection and vascular changes following stroke. Due to the critical role of leptomeningeal anastomoses or pial collateral vessels, in cerebral blood flow restoration and tissue protection following ischemic stroke, we also investigated their growth and remodeling. Methods. Mice were exposed to transcranial LIFU (fundamental frequency: 1.1 MHz, sonication duration: 300 ms, interstimulus interval: 3 s, pulse repetition frequency: 1 kHz, duty cycle per pulse: 50%, and peak negative pressure: -2.0 MPa) for 30 minutes following induction of pMCAO and then evaluated for infarct volume, blood-brain barrier (BBB) disruption, and pial collateral remodeling at 24 hrs post-pMCAO. Results. We found significant neuroprotection in mice exposed to LIFU compared to mock treatment. These findings correlated with a reduced area of IgG deposition in the cerebral cortex, suggesting attenuation of BBB breakdown under LIFU conditions. We also observed increased diameter of CD31-postive microvessels in the ischemic cortex. We observed no significant difference in pial collateral vessel size between FUS and mock treatment at 24 hrs post-pMCAO. Conclusion. Our data suggests that therapeutic use of LIFU may induce protection through microvascular remodeling that is not related to its thrombolytic activity.

18.
Front Mol Neurosci ; 14: 747770, 2021.
Article in English | MEDLINE | ID: mdl-34630039

ABSTRACT

Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.

19.
Sci Rep ; 10(1): 15374, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958852

ABSTRACT

Brain injury resulting from repeated mild traumatic insult is associated with cognitive dysfunction and other chronic co-morbidities. The current study tested the effects of aberrant neurogenesis in a mouse model of repeated mild traumatic brain injury (rmTBI). Using Barnes Maze analysis, we found a significant reduction in spatial learning and memory at 24 days post-rmTBI compared to repeated sham (rSham) injury. Cell fate analysis showed a greater number of BrdU-labeled cells which co-expressed Prox-1 in the DG of rmTBI-injured mice which coincided with enhanced cFos expression for neuronal activity. We then selectively ablated dividing neural progenitor cells using a 7-day continuous infusion of Ara-C prior to rSham or rmTBI. This resulted in attenuation of cFos and BrdU-labeled cell changes and prevented associated learning and memory deficits. We further showed this phenotype was ameliorated in EphA4f./f/Tie2-Cre knockout compared to EphA4f./f wild type mice, which coincided with altered mRNA transcript levels of MCP-1, Cx43 and TGFß. These findings demonstrate that cognitive decline is associated with an increased presence of immature neurons and gene expression changes in the DG following rmTBI. Our data also suggests that vascular EphA4-mediated neurogenic remodeling adversely affects learning and memory behavior in response to repeated insult.


Subject(s)
Brain Concussion/metabolism , Brain Concussion/pathology , Learning Disabilities/metabolism , Memory Disorders/metabolism , Neurogenesis/physiology , Receptor, EphA4/metabolism , Animals , Brain Concussion/complications , Disease Models, Animal , Learning Disabilities/etiology , Learning Disabilities/pathology , Male , Maze Learning/physiology , Memory/physiology , Memory Disorders/etiology , Memory Disorders/pathology , Mice , Neurons/metabolism , Neurons/physiology , Spatial Learning/physiology
20.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397302

ABSTRACT

Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood-brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell-cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain Edema/metabolism , Brain Injuries, Traumatic/metabolism , Endothelial Cells/metabolism , Animals , Aquaporins/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Brain Edema/physiopathology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/therapy , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL