Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Am Soc Mass Spectrom ; 34(7): 1225-1229, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37267530

ABSTRACT

Laser capture microdissection (LCM) has become an indispensable tool for mass spectrometry-based proteomic analysis of specific regions obtained from formalin-fixed paraffin-embedded (FFPE) tissue samples in both clinical and research settings. Low protein yields from LCM samples along with laborious sample processing steps present challenges for proteomic analysis without sacrificing protein and peptide recovery. Automation of sample preparation workflows is still under development, especially for samples such as laser-capture microdissected tissues. Here, we present a simplified and rapid workflow using adaptive focused acoustics (AFA) technology for sample processing for high-throughput FFPE-based proteomics. We evaluated three different workflows: standard extraction method followed by overnight trypsin digestion, AFA-assisted extraction and overnight trypsin digestion, and AFA-assisted extraction simultaneously performed with trypsin digestion. The use of AFA-based ultrasonication enables automated sample processing for high-throughput proteomic analysis of LCM-FFPE tissues in 96-well and 384-well formats. Further, accelerated trypsin digestion combined with AFA dramatically reduced the overall processing times. LC-MS/MS analysis revealed a slightly higher number of protein and peptide identifications in AFA accelerated workflows compared to standard and AFA overnight workflows. Further, we did not observe any difference in the proportion of peptides identified with missed cleavages or deamidated peptides across the three different workflows. Overall, our results demonstrate that the workflow described in this study enables rapid and high-throughput sample processing with greatly reduced sample handling, which is amenable to automation.


Subject(s)
High-Throughput Screening Assays , Proteomics , Humans , Workflow , Proteomics/instrumentation , Proteomics/methods , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Peptides/chemistry
2.
Vaccines (Basel) ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36298625

ABSTRACT

The COVID-19 pandemic has revealed a crucial need for rapid, straightforward collection and testing of biological samples. Serological antibody assays can analyze patient blood samples to confirm immune response following mRNA vaccine administration or to verify past exposure to the SARS-CoV-2 virus. While blood tests provide vital information for clinical analysis and epidemiology, sample collection is not trivial; this process requires a visit to the doctor's office, a professionally trained phlebotomist to draw several milliliters of blood, processing to yield plasma or serum, and necessitates appropriate cold chain storage to preserve the specimen. A novel whole blood collection kit (truCOLLECT) allows for a lancet-based, decentralized capillary blood collection of metered low volumes and eliminates the need for refrigerated transport and storage through the process of active desiccation. Anti-SARS-CoV-2 spike (total and neutralizing) and nucleocapsid protein antibody titers in plasma samples obtained via venipuncture were compared to antibodies extracted from desiccated whole blood using Adaptive Focused Acoustics (AFA). Paired plasma versus desiccated blood extracts yields Pearson correlation coefficients of 0.98; 95% CI [0.96, 0.99] for anti-SARS-CoV-2 spike protein antibodies, 0.97; 95% CI [0.95, 0.99] for neutralizing antibodies, and 0.97; 95% CI [0.94, 0.99] for anti-SARS-CoV-2 nucleocapsid protein antibodies. These data suggest that serology testing using desiccated and stabilized whole blood samples can be a convenient and cost-effective alternative to phlebotomy.

4.
PLoS One ; 5(5): e10595, 2010 May 12.
Article in English | MEDLINE | ID: mdl-20485679

ABSTRACT

BACKGROUND: Multiple locus sequence typing (MLST) has become a central genotyping strategy for analysis of bacterial populations. The scheme involves de novo sequencing of 6-8 housekeeping loci to assign unique sequence types. In this work we adapted MLST to a rapid microfluidics platform in order to enhance speed and reduce laboratory labor time. METHODOLOGY/PRINCIPAL FINDINGS: Using two integrated microfluidic devices, DNA was purified from 100 Bacillus cereus soil isolates, used as a template for multiplex amplification of 7 loci and sequenced on forward and reverse strands. The time on instrument from loading genomic DNA to generation of electropherograms was only 1.5 hours. We obtained full-length sequence of all seven MLST alleles from 84 representing 46 different Sequence Types. At least one allele could be sequenced from a further 15 strains. The nucleotide diversity of B. cereus isolated in this study from one location in Rockville, Maryland (0.04 substitutions per site) was found to be as great as the global collection of isolates. CONCLUSIONS/SIGNIFICANCE: Biogeographical investigation of pathogens is only one of a panoply of possible applications of microfluidics based MLST; others include microbiologic forensics, biothreat identification, and rapid characterization of human clinical samples.


Subject(s)
Bacillus cereus/genetics , Genetic Loci/genetics , Microfluidic Analytical Techniques/methods , Sequence Analysis, DNA/methods , Bacillus cereus/classification , Bacterial Typing Techniques , Environmental Microbiology , Phylogeny , Polymerase Chain Reaction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL