Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Clin Chem Lab Med ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896022

ABSTRACT

OBJECTIVES: Dihydropyrimidine dehydrogenase (DPD) deficiency is the main cause of severe fluoropyrimidine-related toxicities. The best strategy for identifying DPD-deficient patients is still not defined. The EMA recommends targeted DPYD genotyping or uracilemia (U) testing. We analyzed the concordance between both approaches. METHODS: This study included 19,376 consecutive French patients with pre-treatment plasma U, UH2 and targeted DPYD genotyping (*2A, *13, D949V, *7) analyzed at Eurofins Biomnis (2015-2022). RESULTS: Mean U was 9.9 ± 10.1 ng/mL (median 8.7, range 1.6-856). According to French recommendations, 7.3 % of patients were partially deficient (U 16-150 ng/mL) and 0.02 % completely deficient (U≥150 ng/mL). DPYD variant frequencies were *2A: 0.83 %, *13: 0.17 %, D949V: 1.16 %, *7: 0.05 % (2 homozygous patients with U at 22 and 856 ng/mL). Variant carriers exhibited higher U (median 13.8 vs. 8.6 ng/mL), and lower UH2/U (median 7.2 vs. 11.8) and UH2/U2 (median 0.54 vs. 1.37) relative to wild-type patients (p<0.00001). Sixty-six% of variant carriers exhibited uracilemia <16 ng/mL, challenging correct identification of DPD deficiency based on U. The sensitivity (% patients with a deficient phenotype among variant carriers) of U threshold at 16 ng/mL was 34 %. The best discriminant marker for identifying variant carriers was UH2/U2. UH2/U2<0.942 (29.7 % of patients) showed enhanced sensitivity (81 %) in identifying deleterious genotypes across different variants compared to 16 ng/mL U. CONCLUSIONS: These results reaffirm the poor concordance between DPD phenotyping and genotyping, suggesting that both approaches may be complementary and that targeted DPYD genotyping is not sufficiently reliable to identify all patients with complete deficiency.

2.
Ther Drug Monit ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38758634

ABSTRACT

BACKGROUND: Conditioning bifunctional agent, busulfan, is commonly used on children before hematopoietic stem cell transplantation. Currently, at the Ramathibodi hospital, Bangkok, Thailand, initial dosing is calculated according to age and body surface area, and 7 samples per day are used for therapeutic drug monitoring (TDM). This study aimed to identify the best strategies for individual dosages a priori from patient characteristics and a posteriori based on TDM. METHODS: The pharmacokinetic data set consisted of 2018 plasma concentrations measured in 135 Thai (n = 135) pediatric patients (median age = 8 years) and were analyzed using a population approach. RESULTS: Body weight, presence of malignant disease, and genetic polymorphism of Glutathione S-transferase Alpha-1 (GSTA1) were predictors of clearance. The optimum sampling times for TDM concentration measurements were 0.25, 2, and 5 hours after a 3-hour infusion. This was sufficient to obtain a Bayesian estimate of clearance a posteriori. Simulations showed the poor performance of a priori formula-based dose calculations with 90% of patients demonstrating a 69%-151% exposure interval around the target. This interval shrank to 85%-124% if TDM was carried out only at day 1 and to 90%-116% with TDM at days 1 and 3. CONCLUSIONS: This comprehensive study reinforces the interest of TDM in managing interindividual variability in busulfan exposure. Therapeutic drug monitoring can reliably be implemented from 3 samples using the Bayesian approach, preferably over 2 days. If using the latter is not possible, the formulas developed herein could present an alternative in Thai patients.

3.
Eur J Pharm Sci ; 199: 106809, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788907

ABSTRACT

BACKGROUND: Letrozole, an aromatase inhibitor metabolised via CYP2A6 and CYP3A4/5 enzymes, is used as adjuvant therapy for women with hormone receptor (HR)-positive early breast cancer. The objective of this study was to quantify the impact of CYP2A6 genotype on letrozole pharmacokinetics (PK), to identify non-adherent patients using a population approach and explore the possibility of a relationship between non-adherence and early relapse. METHODS: Breast cancer patients enrolled in the prospective PHACS study (ClinicalTrials.gov NCT01127295) and treated with adjuvant letrozole 2.5 mg/day were included. Trough letrozole concentrations (Css,trough) were measured every 6 months for 3 years by a validated LC-MS/MS method. Concentration-time data were analysed using non-linear mixed effects modelling. Three methods were evaluated for identification of non-adherent subjects using the base PK model. RESULTS: 617 patients contributing 2534 plasma concentrations were included and led to a one-compartment PK model with linear absorption and elimination. Model-based methods identified 28 % of patients as non-adherent based on high fluctuations of their Css,trough compared to 3 % based on patient declarations. The covariate analysis performed in adherent subjects revealed that CYP2A6 intermediate (IM) and slow metabolisers (SM) had 21 % (CI95 % = 12 - 30 %) and 46 % (CI95 % = 41 - 51 %) lower apparent clearance, respectively, compared to normal and ultrarapid metabolisers (NM+UM). Early relapse (19 patients) was not associated with model-estimated, concentration-based or declared adherence in the total population (p = 0.41, p = 0.37 and p = 0.45, respectively). CONCLUSIONS: These findings will help future investigations focusing on the exposure-efficacy relationship for letrozole in adjuvant setting.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Letrozole , Medication Adherence , Humans , Letrozole/pharmacokinetics , Letrozole/administration & dosage , Letrozole/therapeutic use , Letrozole/blood , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Middle Aged , Aged , Aromatase Inhibitors/pharmacokinetics , Aromatase Inhibitors/administration & dosage , Aromatase Inhibitors/therapeutic use , Aromatase Inhibitors/blood , Adult , Chemotherapy, Adjuvant/methods , Models, Biological , Prospective Studies , Receptors, Estrogen/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/blood , Antineoplastic Agents/administration & dosage , Aged, 80 and over
4.
Clin Pharmacol Ther ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494911

ABSTRACT

Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive breast cancer.

6.
Br J Cancer ; 130(6): 961-969, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272963

ABSTRACT

BACKGROUND: Interindividual pharmacokinetic variability may influence the clinical benefit or toxicity of cabozantinib in metastatic renal cell carcinoma (mRCC). We aimed to investigate the exposure-toxicity and exposure-response relationship of cabozantinib in unselected mRCC patients treated in routine care. METHODS: This ambispective multicenter study enrolled consecutive patients receiving cabozantinib in monotherapy. Steady-state trough concentration (Cmin,ss) within the first 3 months after treatment initiation was used for the PK/PD analysis with dose-limiting toxicity (DLT) and survival outcomes. Logistic regression and Cox proportional-hazards models were used to identify the risk factors of DLT and inefficacy in patients, respectively. RESULTS: Seventy-eight mRCC patients were eligible for the statistical analysis. Fifty-two patients (67%) experienced DLT with a median onset of 2.1 months (95%CI 0.7-8.2). In multivariate analysis, Cmin,ss was identified as an independent risk factor of DLT (OR 1.46, 95%CI [1.04-2.04]; p = 0.029). PFS and OS were not statistically associated with the starting dose (p = 0.81 and p = 0.98, respectively). In the multivariate analysis of PFS, Cmin, ss > 336 ng/mL resulted in a hazard ratio of 0.28 (95%CI, 0.10-0.77, p = 0.014). By contrast, Cmin, ss > 336 ng/mL was not statistically associated with longer OS. CONCLUSION: Early plasma drug monitoring may be useful to optimise cabozantinib treatment in mRCC patients treated in monotherapy, especially in frail patients starting at a lower than standard dose.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Anilides/adverse effects , Pyridines/adverse effects , Retrospective Studies
7.
Br J Cancer ; 130(5): 808-818, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225422

ABSTRACT

BACKGROUND: Dihydropyrimidine dehydrogenase (DPD) deficiency is the main known cause of life-threatening fluoropyrimidine (FP)-induced toxicities. We conducted a meta-analysis on individual patient data to assess the contribution of deleterious DPYD variants *2A/D949V/*13/HapB3 (recommended by EMA) and clinical factors, for predicting G4-5 toxicity. METHODS: Study eligibility criteria included recruitment of Caucasian patients without DPD-based FP-dose adjustment. Main endpoint was 12-week haematological or digestive G4-5 toxicity. The value of DPYD variants *2A/p.D949V/*13 merged, HapB3, and MIR27A rs895819 was evaluated using multivariable logistic models (AUC). RESULTS: Among 25 eligible studies, complete clinical variables and primary endpoint were available in 15 studies (8733 patients). Twelve-week G4-5 toxicity prevalence was 7.3% (641 events). The clinical model included age, sex, body mass index, schedule of FP-administration, concomitant anticancer drugs. Adding *2A/p.D949V/*13 variants (at least one allele, prevalence 2.2%, OR 9.5 [95%CI 6.7-13.5]) significantly improved the model (p < 0.0001). The addition of HapB3 (prevalence 4.0%, 98.6% heterozygous), in spite of significant association with toxicity (OR 1.8 [95%CI 1.2-2.7]), did not improve the model. MIR27A rs895819 was not associated with toxicity, irrespective of DPYD variants. CONCLUSIONS: FUSAFE meta-analysis highlights the major relevance of DPYD *2A/p.D949V/*13 combined with clinical variables to identify patients at risk of very severe FP-related toxicity.


Subject(s)
Antineoplastic Agents , Dihydropyrimidine Dehydrogenase Deficiency , Humans , Fluorouracil/adverse effects , Dihydrouracil Dehydrogenase (NADP)/genetics , Heterozygote , Genotype , Capecitabine/adverse effects
8.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762649

ABSTRACT

Even though male breast cancer (MBC) risk encompasses both genetic and environmental aetiologies, the primary risk factor is a germline pathogenic variant (PV) or likely pathogenic variant (LPV) in BRCA2, BRCA1 and/or PALB2 genes. To identify new potential MBC-specific predisposition genes, we sequenced a panel of 585 carcinogenesis genes in an MBC cohort without BRCA1/BRCA2/PALB2 PV/LPV. We identified 14 genes carrying rare PVs/LPVs in the MBC population versus noncancer non-Finnish European men, predominantly coding for DNA repair and maintenance of genomic stability proteins. We identified for the first time PVs/LPVs in PRCC (pre-mRNA processing), HOXA9 (transcription regulation), RECQL4 and WRN (maintenance of genomic stability) as well as in genes involved in other cellular processes. To study the specificity of this MBC PV/LPV profile, we examined whether variants in the same genes could be detected in a female breast cancer (FBC) cohort without BRCA1/BRCA2/PALB2 PV/LPV. Only 5/109 women (4.6%) carried a PV/LPV versus 18/85 men (21.2%) on these genes. FBC did not carry any PV/LPV on 11 of these genes. Although 5.9% of the MBC cohort carried PVs/LPVs in PALLD and ERCC2, neither of these genes were altered in our FBC cohort. Our data suggest that in addition to BRCA1/BRCA2/PALB2, other genes involved in DNA repair/maintenance or genomic stability as well as cell adhesion may form a specific MBC PV/LPV signature.

10.
Br J Clin Pharmacol ; 89(8): 2446-2457, 2023 08.
Article in English | MEDLINE | ID: mdl-36918744

ABSTRACT

AIM: Dihydropyrimidine dehydrogenase (DPD) deficiency can be detected by phenotyping (measurement of plasma uracil [U], with U ≥ 16 µg/L defining a partial deficiency) and/or by genotyping (screening for the four most frequent DPYD variants). We aimed to determine the proportion of discrepancies between phenotypic and genotypic approaches and to identify possible explanatory factors. METHODS: Data from patients who underwent both phenotyping and genotyping were retrospectively collected. Complementary genetic analyses (genotyping of the variant c.557A>G and DPYD sequencing) were performed for patients with U ≥ 16 µg/L without any common variants. The characteristics of patients classified according to the congruence of the phenotyping and genotyping approaches were compared (Kruskal-Wallis test), and determinants of U levels were studied in the whole cohort (linear model). RESULTS: Among the 712 included patients, phenotyping and genotyping were discordant for 12.5%, with 63 (8.8%) having U ≥ 16 µg/L in the absence of a common variant. Complementary genetic investigations marginally reduced the percentage of discrepancies to 12.1%: Among the nine additional identified variants, only the c.557A>G variant, carried by three patients, had been previously reported to be associated with DPD deficiency. Liver dysfunction could explain certain discordances, as ASAT, ALP, GGT and bilirubin levels were significantly elevated, with more frequent liver metastases in patients with U ≥ 16 µg/L and the absence of a DPYD variant. The impact of cytolysis was confirmed, as ASAT levels were independently associated with increased U (p < 0.001). CONCLUSION: The frequent discordances between DPD phenotyping and genotyping approaches highlight the need to perform these two approaches to screen for all DPD deficiencies.


Subject(s)
Dihydropyrimidine Dehydrogenase Deficiency , Dihydrouracil Dehydrogenase (NADP) , Humans , Dihydrouracil Dehydrogenase (NADP)/genetics , Genotype , Antimetabolites, Antineoplastic , Capecitabine , Retrospective Studies , Dihydropyrimidine Dehydrogenase Deficiency/genetics , Dihydropyrimidine Dehydrogenase Deficiency/complications , Dihydropyrimidine Dehydrogenase Deficiency/diagnosis , Fluorouracil
11.
Eur J Cancer ; 181: 3-17, 2023 03.
Article in English | MEDLINE | ID: mdl-36621118

ABSTRACT

Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.


Subject(s)
Dihydropyrimidine Dehydrogenase Deficiency , Humans , Dihydropyrimidine Dehydrogenase Deficiency/complications , Dihydropyrimidine Dehydrogenase Deficiency/diagnosis , Dihydropyrimidine Dehydrogenase Deficiency/genetics , Fluorouracil , Antimetabolites, Antineoplastic/therapeutic use , Capecitabine , Dihydrouracil Dehydrogenase (NADP)/genetics , Dihydrouracil Dehydrogenase (NADP)/metabolism
13.
Br J Clin Pharmacol ; 89(2): 762-772, 2023 02.
Article in English | MEDLINE | ID: mdl-36104927

ABSTRACT

AIMS: Determining dihydropyrimidine dehydrogenase (DPD) activity by measuring patient's uracil (U) plasma concentration is mandatory before fluoropyrimidine (FP) administration in France. In this study, we aimed to refine the pre-analytical recommendations for determining U and dihydrouracil (UH2 ) concentrations, as they are essential in reliable DPD-deficiency testing. METHODS: U and UH2 concentrations were collected from 14 hospital laboratories. Stability in whole blood and plasma after centrifugation, the type of anticoagulant and long-term plasma storage were evaluated. The variation induced by time and temperature was calculated and compared to an acceptability range of ±20%. Inter-occasion variability (IOV) of U and UH2 was assessed in 573 patients double sampled for DPD-deficiency testing. RESULTS: Storage of blood samples before centrifugation at room temperature (RT) should not exceed 1 h, whereas cold (+4°C) storage maintains the stability of uracil after 5 hours. For patients correctly double sampled, IOV of U reached 22.4% for U (SD = 17.9%, range = 0-99%). Notably, 17% of them were assigned with a different phenotype (normal or DPD-deficient) based on the analysis of their two samples. For those having at least one non-compliant sample, this percentage increased up to 33.8%. The moment of blood collection did not affect the DPD phenotyping result. CONCLUSION: Caution should be taken when interpreting U concentrations if the time before centrifugation exceeds 1 hour at RT, since it rises significantly afterwards. Not respecting the pre-analytical conditions for DPD phenotyping increases the risk of DPD status misclassification.


Subject(s)
Dihydropyrimidine Dehydrogenase Deficiency , Humans , Dihydropyrimidine Dehydrogenase Deficiency/diagnosis , Dihydrouracil Dehydrogenase (NADP)/genetics , Uracil , Phenotype , Plasma , Fluorouracil
14.
Metabolites ; 12(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36144257

ABSTRACT

Tyrosine kinase inhibitors pazopanib and sunitinib are both used to treat advanced renal cell carcinoma but expose patients to an increased risk of hepatotoxicity. We have previously identified two aldehyde derivatives for pazopanib and sunitinib (P-CHO and S-CHO, respectively) in liver microsomes. In this study, we aimed to decipher their role in hepatotoxicity by treating HepG2 and HepaRG hepatic cell lines with these derivatives and evaluating cell viability, mitochondrial dysfunction, and oxidative stress accumulation. Additionally, plasma concentrations of P-CHO were assessed in a cohort of patients treated with pazopanib. Results showed that S-CHO slightly decreased the viability of HepG2, but to a lesser extent than sunitinib, and affected the maximal respiratory capacity of the mitochondrial chain. P-CHO decreased viability and ATP production in HepG2. Traces of P-CHO were detected in the plasma of patients treated with pazopanib. Overall, these results showed that P-CHO and S-CHO affect hepatocyte integrity and could be involved in the pazopanib and sunitinib hepatotoxicity.

16.
Therapie ; 77(2): 171-183, 2022.
Article in English | MEDLINE | ID: mdl-34922740

ABSTRACT

The discovery of molecular alterations involved in oncogenesis is evolving rapidly and has led to the development of new innovative targeted therapies in oncology. High-throughput sequencing techniques help to identify genomic targets and to provide predictive molecular biomarkers of response to guide alternative therapeutic strategies. Besides the emergence of these theranostic markers for the new targeted treatments, pharmacogenetic markers (corresponding to genetic variants existing in the constitutional DNA, i.e., the host genome) can help to optimize the use of chemotherapy. In this review, we present the current clinical applications of constitutional PG and the recent concepts and advances in pharmacogenomics, a rapidly evolving field that focuses on various molecular alterations identified on constitutional or somatic (tumor) genome.


Subject(s)
Hematologic Neoplasms , Neoplasms , Drug Prescriptions , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Pharmacogenetics/methods , Precision Medicine
17.
Cancer Res ; 81(23): 5963-5976, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34645611

ABSTRACT

Colorectal adenocarcinoma is a leading cause of death worldwide, and immune infiltration in colorectal tumors has been recognized recently as an important pathophysiologic event. In this context, tumor-associated macrophages (TAM) have been related to chemoresistance to 5-fluorouracil (5-FU), the first-line chemotherapeutic agent used in treating colorectal cancers. Nevertheless, the details of this chemoresistance mechanism are still poorly elucidated. In the current study, we report that macrophages specifically overexpress dihydropyrimidine dehydrogenase (DPD) in hypoxia, leading to macrophage-induced chemoresistance to 5-FU via inactivation of the drug. Hypoxia-induced macrophage DPD expression was controlled by HIF2α. TAMs constituted the main contributors to DPD activity in human colorectal primary or secondary tumors, while cancer cells did not express significant levels of DPD. In addition, contrary to humans, macrophages in mice do not express DPD. Together, these findings shed light on the role of TAMs in promoting chemoresistance in colorectal cancers and identify potential new therapeutic targets. SIGNIFICANCE: Hypoxia induces HIF2α-mediated overexpression of dihydropyrimidine dehydrogenase in TAMs, leading to chemoresistance to 5-FU in colon cancers.


Subject(s)
Colorectal Neoplasms/drug therapy , Dihydrouracil Dehydrogenase (NADP)/metabolism , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Gene Expression Regulation, Enzymologic , Hypoxia/physiopathology , Tumor-Associated Macrophages/enzymology , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Dihydrouracil Dehydrogenase (NADP)/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays
18.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34451893

ABSTRACT

BACKGROUND: Different liquid chromatography tandem mass spectrometry (LC-MS/MS) methods have been published for quantification of monoclonal antibodies (mAbs) in plasma but thus far none allowed the simultaneous quantification of several mAbs, including immune checkpoint inhibitors. We developed and validated an original multiplex LC-MS/MS method using a ready-to-use kit to simultaneously assay 7 mAbs (i.e., bevacizumab, cetuximab, ipilimumab, nivolumab, pembrolizumab, rituximab and trastuzumab) in plasma. This method was next cross-validated with respective reference methods (ELISA or LC-MS/MS). METHODS: The mAbXmise kit was used for mAb extraction and full-length stable-isotope-labeled antibodies as internal standards. The LC-MS/MS method was fully validated following current EMA guidelines. Each cross validation between reference methods and ours included 16-28 plasma samples from cancer patients. RESULTS: The method was linear from 2 to 100 µg/mL for all mAbs. Inter- and intra-assay precision was <14.6% and accuracy was 90.1-111.1%. The mean absolute bias of measured concentrations between multiplex and reference methods was 10.6% (range 3.0-19.9%). CONCLUSIONS: We developed and cross-validated a simple, accurate and precise method that allows the assay of up to 7 mAbs. Furthermore, the present method is the first to offer a simultaneous quantification of three immune checkpoint inhibitors likely to be associated in patients.

19.
CPT Pharmacometrics Syst Pharmacol ; 10(10): 1208-1220, 2021 10.
Article in English | MEDLINE | ID: mdl-34342170

ABSTRACT

Pharmacokinetic (PK) parameter estimation is a critical and complex step in the model-informed precision dosing (MIPD) approach. The mapbayr package was developed to perform maximum a posteriori Bayesian estimation (MAP-BE) in R from any population PK model coded in mrgsolve. The performances of mapbayr were assessed using two approaches. First, "test" models with different features were coded, for example, first-order and zero-order absorption, lag time, time-varying covariates, Michaelis-Menten elimination, combined and exponential residual error, parent drug and metabolite, and small or large inter-individual variability (IIV). A total of 4000 PK profiles (combining single/multiple dosing and rich/sparse sampling) were simulated from each test model, and MAP-BE of parameters was performed in both mapbayr and NONMEM. Second, a similar procedure was conducted with seven "real" previously published models to compare mapbayr and NONMEM on a PK outcome used in MIPD. For the test models, 98% of mapbayr estimations were identical to those given by NONMEM. Some discordances could be observed when dose-related parameters were estimated or when models with large IIV were used. The exploration of objective function values suggested that mapbayr might outdo NONMEM in specific cases. For the real models, a concordance close to 100% on PK outcomes was observed. The mapbayr package provides a reliable solution to perform MAP-BE of PK parameters in R. It also includes functions dedicated to data formatting and reporting and enables the creation of standalone Shiny web applications dedicated to MIPD, whatever the model or the clinical protocol and without additional software other than R.


Subject(s)
Bayes Theorem , Pharmacokinetics , Software , Statistics as Topic , Humans , Models, Biological
20.
J Pers Med ; 11(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34442436

ABSTRACT

Dihydropyrimidine dehydrogenase deficiency is a major cause of severe fluoropyrimidine-induced toxicity and could lead to interruption of chemotherapy or life-threatening adverse reactions. This study aimed to characterize the DPYD exon sequence, mRNA expression and in vivo DPD activity by plasma uracil concentration. It was carried out in two groups of patients with extreme phenotypes (toxicity versus control) newly treated with a fluoropyrimidine, during the first three cycles of treatment. A novel nonsense gene variant (c.2197insA) was most likely responsible for fluoropyrimidine-induced toxicity in one patient, while neither DPYD mRNA expression nor plasma uracil concentration was globally associated with early toxicity. Our present work may help improve pharmacogenetic testing to avoid severe and undesirable adverse reactions to fluoropyrimidine treatment and it also supports the idea of looking beyond DPYD.

SELECTION OF CITATIONS
SEARCH DETAIL
...